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Abstract

In this work, we investigate the problem of esti-
mating a rigid transform mapping between a calibrated
stereo camera rig and a multi-layer lidar. Such a trans-
form may be used to merge data between these 2 sys-
tems, addressing the colourless sparse nature of the li-
dar data and potentially improving depth estimation
from the stereo pairs. The proposed approach features
a novel planar calibration object with three circular
features allowing for the robust acquisition of corre-
sponding features between sensors. A closed-form reg-
istration of correspondences is proposed, leading to the
derivation of the required transform. The main ap-
peal of the proposed approach is its conceptually simple
formulation and the fact that only a single image from
each device is required for calibration. Our experiments
were performed on real data captured in outdoor and in-
door environments and demonstrate good performance
with a Velodyne VLP-16 lidar and GOPRO HERO 3+
Stereo rig.

1 Introduction

With the advent of pervasive computer vision and
high performance lightweight energy sources, a wealth
of fields have opened to machine vision systems, most
notably in forestry [1] and farming [2]. Of great inter-
est are affordable UAV-based and multi-camera band
systems as they have the potential to produce more
robust and complete data-sets. As such, the fusion of
active (say lidar) and passive vision (say stereo-vision)
apparatus provides a unique opportunity to generate
better quality computer models. Lidar data may gain
colour and density, while point clouds from stereo im-
ages may gain accuracy and points from a wider field
of view. As such, a critical step is finding the mapping
between a calibrated stereo rig and a multi-layer lidar.
Typically this mapping is a rigid transform between
coordinate systems.

The main obstacles in determination of this mapping
are (i) the sparse nature of lidar data, which leads to
difficulties in finding exact locations of corresponding
features and measurement noise; (ii) the noise associ-
ated with a stereo system rig; (iii) the distance from
the scene; and (iv) the stereo-matching algorithm per-
formance which depends on the image content.

The main advantages are (i) the very dense nature of
depth-generated from stereo-vision systems associated
with a reasonnably high accuracy (as below lidar ac-
curacy) at close range; (ii) the illumination invariant

nature of lidar data sampling; (iii) the low measure-
ment noise in the Velodyne VLP-16 lidar (used in our
experiments) i.e. RMSE 30 mm [3] for a distance up
to 100 meters.

Our approach firstly determines a set corresponding
features robustly, and then calculates a rigid trans-
form to register those features. The novelty in our
approach is a focus on acquiring robust corresponding
features, which then greatly simplifies the calculations
with respect to feature registration, since much of the
uncertainty has been mitigated. This is in contrast
with most state-of-the-art algorithms that rely on less
robust feature extraction, but then need to optimize
solutions in complex error spaces [4] or sample over
multiple images [5].

In section 2 we will discuss some of the history with
respect to the evolution of the lidar and look at the cur-
rent state-of-the-art approaches to calibrating them.
In section 3 we introduce our experimental rig and cal-
ibration object, describe the proposed algorithm. In
section 4 we outline and present the results of our ex-
periments and conclude with section 5.

2 Literature Review

Initially, the first lidars typically featured a single
360 scan-line. They were typically used in robotics to
automatically assess distance from surrounding obsta-
cles. Early work has been done to attempt to calibra-
tion these types of cameras with colour images, such
as the multiple plane approach featured in [5]. How-
ever lidars have evolved a lot and now feature multiple
scan-lines and are used in many sophisticated projects
including the Google car [6].

Calibration of stereo rigs and lidars is a fairly pop-
ular area of research and therefore there exists several
different approaches that authors have used [7, 8, 9,
4, 10, 11].

Once such approach makes use of external sensors
such as the Inertial Measurement Unit (IMU) in con-
junction with a planar calibration object in order to es-
tablish a set of images and corresponding transforma-
tions to constraint the determination of a rigid trans-
form between lidar space and camera space [7] [8].

Another approach uses typical calibration objects
used in camera calibration to calibrate lidars. Most
of these approaches make use of the calibration object
used in Zhang calibration can involve the acquisition of
multiple images. The calibration objects are typically
detected as planes in lidar space.
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This work falls under lidar calibration with special-
ized calibration objects’ category. In [9], a black line
on a white sheet of paper is used. In [4] planar calibra-
tion object with holes of various geometric shapes are
used, which is similar to our calibration object. In [10]
a single planar object with a single large circular hole
is used. In [11], a set of boxes is used with different
coloured surfaces, arranged so that each is touching.

3 Methodology

3.1 Equipment

Our camera rig consists of a Velodyne VLP-16 lidar
and 2 GOPRO HERO 3+ Black edition cameras as de-
picted in figure 1. The GOPRO cameras are synchro-
nized with each lidar via a GOPRO synchronization
cable designed for the HERO 3+ and is synchronized
with the lidar via software.

Figure 1. (Left) Our experimental acquistion sys-
tem feature a Velodyne Lidar VLP-16 and two
Synchronized GOPRO HERO 3+ Black edition
cameras. (Right) Our planar calibration object.

The Velodyne VLP-16 lidar consist of 16 scan-lines,
has a 100 meter range and a 360 horizontal field of view
and a 30 vertical field of view. Points are extracted
with the coordinate system orientated so that the Y-
axis is forwards, the X-axis is to the side and the lasers
revolve around the Z-axis.

The GOPRO camera system was set to capture sin-
gle frames of size 4000×3000 pixels with a horizontal
field of view of 122.6 degrees and vertical field of view
of 94.4 degrees. The baseline between the cameras is
100 mm.

The calibration object chosen (depicted in figure 1)
consists of a cardboard plane maintained rigidly with
a custom-made aluminium rectangular frame. Its size
was carefully chosen to contain the 16 scan-lines of the
lidar at a distance of 1 meter, thus making the dimen-
sions 600×850 mm. The white colour makes the cali-
bration object easy to segment via thresholding when
placed against a dark background. The choice of three
large holes was a compromise between having enough
feature point measurements and having enough scan-
lines intersecting the feature for identification. The
radius of the circle features was chosen to be 150 mm.

3.2 Feature Detection

The extracted features of the calibration object (fig-
ure 1), that are used by the alignment algorithm are,
firstly the plane, P , and the set of circular feature cen-
ters, C = {c1, c2, c3} where ci is a center of a hole
within the calibration object for i = {1, 2, 3}. Here P
may be represented as n · p = d where n is the 3-D
normal vector to the plane, p is a point in 3-D space
and d is a scalar interpreted as an offset to the origin.

3.2.1 Stereo System Calibration Plane Feature
detection

The process of extracting features of calibration ob-
ject from the stereo images is as follows:

1. A depth map is generated from the stereo pair of
images. This starts with determing the cameras’
calibration parameters and continues with distor-
tion removal, image rectification, stereo matching
and a disparity-to-depth conversion as outlined in
[12].

2. An image segmentation process (facilitated by the
white plane placed against a dark background and
adaptive thresholding) extracts a mask of the pix-
els belonging to the calibration plane.

3. The plane Pstereo is then determined by applying
the acquired mask to the depth map, computing
the 3-D locations of the pixels making up the cali-
bration object and applying a basic RANSAC [13]
plane fitting algorithm.

4. The coordinates of the plane are remapped back to
2-D. This is done by defining an arbitrary orthog-
onal basis within the plane (any vector between
2 unique points on the plane and the cross prod-
uct of that vector with the normal of the plane).
Once a coordinate system is defined, a mapping
function can be formed using the scalar product.
The main motivation for creating this mapping is
to eliminate the foreshortening of the circles that
occurs when the camera is not orthogonal to the
calibration object (this process is equivalent to ro-
tating the calibration object’s orientation so that
it is orthogonal to the image plane). This fore-
shortening may otherwise effect the quality of our
subsequent circle detection.

5. Given the new 2-D mapping of the calibration ob-
ject image, feature center positions, Cstereo, are
found using a Canny edge detector followed by a
Hough transform [14] and are further refined using
an approach similar to the Levenberg-Marquardt
in alternative space as mentioned in [15].

Figure 2. (Left) A rectified color image with dis-
tortion removed. (Center) The corresponding
disparity map. (Right) 3D planar calibration ob-
ject mask with circle centers (in red).

3.2.2 Lidar Calibration Plane Feature Detection

The process of extracting features of the calibration
object from the lidar data is as follows:
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1. The Lidar points are filtered into a relevant subset
by determining which of the above points project
onto a forward facing virtual image plane applying
the projection transform computed for the stereo-
vision system as described in section 3.2.1 and ex-
emplified in figure 3.

2. Knowing that the calibration object is approxi-
mately 1 meter from the lidar allows the calibra-
tion object plane, Plidar, to be determined via a
RANSAC plane fit.

3. Knowing the Plidar and size of the calibration ob-
ject allows for the determination of its boundaries
and the determination of threes clusters (using k-
means) of pixels representing the holes in the cal-
ibration object. The centers, Clidar, may then be
approximated as center of gravity of these clusters.

4. To refine Clidar, we transform the point cloud into
2-D space with respect to two arbitrary orthogo-
nal axis in the calibration project plane, represent-
ing each point as a binary value (belonging either
t background or foreground). A RANSAC-based
circle fitting algorithm identifies circle edges be-
fore final refinement using the same approach as
in step 5 of section in section 3.2.1

Figure 3. Lidar front points projected onto an
image plane and colored with respect to depth.

Figure 4. Lidar point cloud with detected circle
centers

3.3 Feature Alignment

After feature matching, we have reduced the prob-
lem to an alignment of calibration objects from the
respective sensor spaces as depicted in figure 5. This
can be solved using a variety of approaches. Our two-
step approach is as follows:
First, the plane Pstereo is aligned with the plane Plidar

where Pstereo is defined as nstereo · p = dstereo) and
Plidar is defined as nlidar · p = dlidar. First, a trans-
lation −nstereodstereo transforms Pstereo to the origin.

Next a rotation about angle θ = acos(nstereo · nlidar)
and axis nstereo × nlidar transforms Pstereo to the
same orientation as Plidar. Finally the translation
nlidardlidar transforms the plane to its new position.
Next, the feature sets Clidar and Cstereo are aligned.
This is achieved by aligning centroids of the feature
sets and then by aligning their orientations. To align
centroids (which we determining using the balance
method), we perform the translation determined by
Centroid(Cstereo) − Centroid(Clidar). The orienta-
tions are aligned by finding the inverse cosine of the
average scalar product between corresponding feature
vectors relative to the centroid, and rotating relative
to the axis nlidar.

Figure 5. The alignment problem. (Left) un-
aligned models. (Right) models after alignment.

4 Results

In order to evaluate our work, we introduce two error
metrics.

The first of these metrics is the plane error defined
as the average shortest distance between the measured
coordinates in lidar space and the calibration object
plane in stereo space. The purpose of this metric is to
indicate the quality of the plane alignment with respect
to the registration. An average error close to the en-
countered noise in lidar space (about 30 mm) typically
indicates a reasonably close alignment.

The formulation of the second metric attempts to
quantify the quality of the alignment of the circular
hole features between lidar and GOPRO. We define
it as the measure of the number of calibration object
points, in lidar space, that project into the holes of
the calibration object in stereo camera space. We have
chosen to name this metric recall (because it is similar
in formulation to the recall metric in binary informa-
tion retrieval) defined as recall = tp/(tp+ fn), where
tp is the number of pixels classified as part of the cal-
ibration object and fn is the number projected into
holes. Clearly a recall of 1 is optimal.

4.1 Experiments

In order to assess our work we conducted five differ-
ent trials in various outdoor and indoor environments.
The goal of the work was to access the consistency and
repeat-ability of our results in a number of environ-
ments. In order to compare the performance of our
algorithm against a state-of-the-art algorithm, we im-
plemented a MATLAB version of the work described
in [4] (referred to here as Velas). This algorithm was
chosen due to its similarity to our approach in terms
of calibration object type and use of Velodyne lidar.

During calibration, the calibration object was placed
roughly parallel to camera rig, at distance of approxi-
mately 1 meter in front of the GOPRO cameras. The

19



Figure 6. Lidar point cloud (green) and 3-D
model (coloured) combined.

Figure 7. Several lidar point clouds (green) com-
bined with a 3-D model (coloured) of a water
trough

parallel orientation is to maximize the detection of the
circular holes.

Our findings revealed a general consistency between
our results the Velas approach. However a key advan-
tage of our approach is its computational efficiency,
as there was no need to compute an inverse distance
transform and 6-D search for an optimum transform.
The summarized combined results of the 5 experiments
are shown in table 1 in terms of the Recall and Plane
Error described above.

Table 1. A summary of results of lidar alignment
experiments

Approach Plane Error Recall
None 98.82 mm 0.76
Velas 41.8 ± 5.2 mm 0.96

Proposed 38.7 ± 6.1 mm 0.97

5 Conclusions

In this work, we set out to verify a robust approach
to aligning lidar point clouds with a stereo camera
system via a commonly identifiable calibration ob-
ject. The approach is novel in its simplicity and focus
on robust feature extraction over robust pose estima-
tion. Our experimental results demonstrates that our
approach is comparable with current state-of-the-art
techniques.

We are currently using this calibration strategy for
research into registering multiple lidar points clouds
against stereo point clouds with good results. An ex-
ample output from this work may be seen in figure 7.
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