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Abstract

In this paper we present an algorithm which recov-
ers the rigid transformation that describes the displace-
ment of a binocular stereo rig in a scene, and uses
this to include a third image to perform dense trinocu-
lar stereo matching and reduce some of the ambiguities
inherent to binocular stereo. The core idea of the pro-
posed algorithm is the assumption that the binocular
baseline is projected to the third view, and thus can
be used to constrain the transformation estimation of
the stereo rig. Our approach shows improved perfor-
mance over binocular stereo, and the accuracy of the
recovered motion allows to compute optical flow from a
single disparity map. These claims are validated with
the KITTI 2012 data set.

1 Introduction

The problem of 3D plane labeling stereo matching
using three images, two binocular and a third with
displacement, can be described as finding the corre-
spondences for each pixel from image Il to Ir and Iu
by assigning a 3D plane that encodes the 1D disparity
that is used to recover a 3D point X. Using a 1D dis-
parity implies that (Il, Ir) are rectified, and a known
projective transformation P (camera) maps Xi to xui
in Iu. Finding the optimal 3D disparity plane labeling
D is modeled as an optimization problem where the
objective is to minimize eq.1.

E(D) = arg min
D

NumP∑
p

{Cp(Dp) +
∑

q∈N(p)

Vpq(Dp, Dq)} (1)

E(D) is the cost of the disparity assignment (en-
ergy), D is a set of planes and Dp encodes the plane,
that gives the disparity of the pixel at p with respect
to another rectified image. Dp(q) is the disparity esti-
mated using plane Dp evaluated at pixel q. NumP is
the number of pixels in the image. N(p) is a neigh-
borhood around p, and q is a neighbor of p. Vpq
(smoothness term) is a function that evaluates how
well the disparity at position p fits its neighbors. The
plane Dp has two parameters: a 3D unit normal vec-
tor n̂p = (nxp , n

y
p, n

z
p) and disparity dp. The disparity

of pixel q = (xq, yq) using Dp is given by:

Dp(q) = a ∗ xq + b ∗ yq + c (2)

where a = −n̂xp/n̂zp, b = −n̂yp/n̂zp and c = (n̂xp ∗ xq +
n̂yp∗yq+n̂zp∗dp)/n̂zp as in [4]. Cp is a function that mea-
sures the similarity/dissimilarity of three pixels, e.g.
Il(p) is compared to Ir(p + Dp(p))) and I lu(φ(P ·X))
with φ(x) = (x1/x3, x2/x3). In this paper the pairwise
function in eq.1 is represented as a Markov Random
Field and minimized using TRW -S[10]. Our algorithm
works under the assumption that the binocular base-
line Tr (fig.1) is projected to I lu , and thus can be used

Figure 1. baseline Tr vs. recovered baseline T ′r

to constrain the recovery of the transformation P from
the stereo rig. The proposed approach takes advan-
tage of rectified binocular stereo pairs (i.e with fronto
parallel cameras) with known intrinsic matrix K and
baseline Tr.

Fig.1 shows how the baseline endpoints (Cl, Cr) are
projected to (elu, eru) by [R|Tlu] and [R|Tru]. The
dotted green line connecting (elu, eru) shows how the
points along Tr are projected by P = K[R|Tlu] in I lu.

2 Related work

The idea of using one or more images has been pre-
viously explored to compute joint optical flow and
disparity in [11, 18, 21], where the reference image
is segmented and each segment is assumed to be a
moving plane. All these algorithms work using four
similar steps: 1) Compute an initial estimate of dis-
parity and optical flow, 2) do plane fitting to gener-
ate plane hypotheses per image segment, 3) estimate
transformation per segment, and 4) do per segment
plane inference. This type of approach is known as
scene flow estimation. Using disparity planes to es-
timate sub-pixel stereo disparity has been previously
used in [9, 20, 4, 3, 13, 7, 15, 14, 21]. These algo-
rithms can be classified in two categories: fixed plane
inference (FPI) and dynamic plane inference (DPI).
FPI algorithms usually work by making an initial dis-
parity estimation and then extracting a set of plane
hypotheses, which are then used to compute the 3D
plane labeling. DPI algorithms use one or more plane
hypotheses per pixel (either from a random initializa-
tion or pre-computed solution), and then propagate
the planes with the “best” scores (depending on the
cost function) to neighboring pixels/regions assuming
that neighbors/regions may have the same plane. The
initial plane labeling is refined in a separate stage, i.e.
planes are dynamically updated. DPI algorithms have
become the state of the art (e.g. [4, 3, 7, 15]). In this
paper we follow the DPI approach.

In order to estimate the transformation from Il/Ir to
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Iu the most common approach is to compute keypoints
and recover the camera position as in [6], and then do
bundle adjustment to refine the obtained solution (e.g.
[1, 17]). These algorithms are designed to work with
multiview uncalibrated stereo, and the bundle adjust-
ment process estimates both optimized camera posi-
tions and 3D points. Another option is to compute the
trifocal tensor using either matching points [6] or lines
[22, 16] to recover the missing camera position like in
the configuration described in fig.1, or use the trifocal
tensor to do point/line transfer, which has the incon-
venience of being unreliable at points that are close
to the epipolar plane. Using either the multi-view ap-
proach or trifocal tensor is an overkill especially when
there are two calibrated cameras and only one extra
camera’s position needs to be computed.

2.1 Contributions

As noted previous approaches to recover the trans-
formation P either relies on optical flow and dispar-
ity estimates, or using camera estimation algorithms
that do not take into account the particular case of
a calibrated stereo rig displacing in space. Our type
of scenario is commonly found in vehicles moving ei-
ther forward or backwards (e.g. [11]). In this paper
we present a camera recovery algorithm that exploits
existing calibration to constrain and estimate a trans-
formation P = K[R|Tlu] (assuming Cl is the origin in
fig.1) that maps a 3D point Xi recovered from images
Il/Ir to a point X ′i consistent with the projected point
xui in Iu, and in doing so we also develop a pixel cost
similarity that seamlessly uses a third image to reduce
some of the ambiguities inherent to the standard binoc-
ular stereo matching pixel cost. Our contributions are:

• Algorithm to recover a rigid transformation
[R|Tlu] constrained by the baseline Tr of the cali-
brated stereo rig.

• Pixel similarity function that integrates three
views in a DPI algorithm (we use [8]).

3 Baseline recovery

The case of a calibrated stereo rig moving as in fig.1
has the characteristic that the camera center Clu is pro-
jected as the epipoles e′lu/e

′
ru in Il/Ir, and the distance

between e′lu and e′ru is related to the baseline size. Fur-
thermore, if two fundamental matrices Flu and Fru are
available then [R|Tlu] and [R|Tru] are extracted, and it
is trivial to compute the baseline T ′r = Tlu − Tru, but
most importantly it is possible to measure the error of
the recovered baseline. Consider the following case:

K · [I|Cl] · Clu −K · [I|Cr] · Clu = e′lu − e′ru (3)

Eq.3 assumes that both cameras in the stereo rig are
are fronto parallel with the same intrinsic parameters,
and to further simplify the situation let the camera Cl
be at the origin in world coordinates and thus Cr = Tr,
Clu = Tlu. Eq.3 then simplifies to:

K(��
���:

0
Tlu − Tlu − Tr) = e′lu − e′ru

−K · Tr = e′lu − e′ru
(4)

All 3D points projected in the image using the
intrinsic matrix K are equal up to a scale factor [6]

and thus from eq.4 the following relation is derived:

‖Tr‖ = S‖K−1(e′lu − e′ru)‖ (5)

When calibration is available and Tr is known there
are only three unknowns: S, e′lu and e′ru. The epipoles
e′lu and e′ru are extracted from fundamental matrices
Flu and Fru, which can be computed from keypoints
that are consistent across three views (Il,Ir and I lu).
Therefore it is trivial to compute the scale factor S
and estimate a baseline T ′r (fig.1) using eq.4, and R
can be extracted from Flu. Note T ′r and Tr should
be same, however due to noise in the points used to
estimate Flu, Fru, T ′r is an approximation of Tr.

3.1 Finding consistent transformations

The process of estimating the baseline T ′r can be

stated as finding updated [R̂|T̂lu] and [R̂|T̂ru] such that
they can be used to: approximate the baseline Tr, ob-
tain fundamental matrices F̂lu and F̂ru that produce
a minimal Sampson error when evaluated, with both
Tlu, Tru translating points to the same depth, because
we have fronto parallel cameras, and minimum repro-
jection error of a point Xi to the third view. This is
expressed as the following optimization problem:

arg min
R̂,T̂lu,T̂ru

n∑
i=0

[ds(xli, x
u
li, Flu) + ds(xri, x

u
li, Fru)

+‖xuli − φ(PXi))‖] + ‖Tr − T ′r‖
(6)

where Xt
i is a 3D point at time t, xli, xri, x

u
li are

the projections of Xi in Il, Ir, I
l
u with P = K[R|Tlu].

F̂lu = K−1′
[T̂lu]×R̂K

−1 and F̂ru = K−1′
[T̂ru]×R̂K

−1

are fundamental matrices consistent with the recov-
ered baseline, ds(x, x′, F ) is the Sampson error. Eq.6 is

parametrized such that R̂ = R∆θx∆θy∆θzR, T̂lu = Tlu+

(∆T xlu,∆T
y
lu,∆T

z
u ) and T̂ru = Tru+(∆T xru,∆T

y
ru,∆T

z
u )

where R , Tlu = βK−1e′lu, and Tru = βK−1e′ru are
the initial estimates with β = K11‖Tr‖/‖e′lu − e′ru‖
assuming a single focal length. Both T̂lu, T̂ru share
∆T zu , which gives a total of 8 parameters to opti-
mize, three for rotation and five for translation. To
ensure that initial (Tlu and Tru) move points to the
same depth their z component is set to the same initial
value, selecting either of T zlu, T

z
ru. Eq.6 is minimized

using the Levenberg-Marquardt algorithm to estimate
R∆θx∆θy∆θz , (∆T

x
lu,∆T

y
lu), (∆T xru,∆T

y
ru), and ∆T zu to

update transformations and make them consistent
with the three views and the stereo rig baseline Tr,
i.e. recover the baseline. Finally, a second solution
R̂′, T̂ ′lu, T̂

′
ru is computed by minimizing again eq.6 us-

ing the previously estimated R∆θx∆θy∆θz with (∆T xlu =
0,∆T ylu = 0), (∆T xru = 0,∆T yru = 0),∆T zu = 0 as initial
estimates, and keeping the best solution. This compen-
sates for noisy initial estimates of Tlu and Tru.

3.2 Computing initial estimates

The initial transformations (R, Tlu, and Tru) and 3D
points (Xi) are estimated by performing the following
steps:

(1) Compute matching ASIFT [12] key points
(xli, xri, x

u
li) for views Il, Ir and I lu.
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(2) Compute the 3D points Xt
i from key points

xli, xri.
(3) Compute Flu from xli, x

u
li, and Fru from xri, x

u
li

using the normalized 8-point algorithm [6].
(4) Compute R from Flu using the algorithm de-

scribed in [6], and (Tlu, Tru) as in sec.3.1.

4 Stereo matching

The pixel similarity function (from eq.1) used in

this paper is made up from three terms Ĉp(Dp) =
Cp(Dp) + U(Dp) + O(Dp). Cp(Dp) the aggregation
function from [8] applied to the raw pixel similarity
cost cp(Dp) (eq.9), U(Dp) is the uniqueness term, and
O(Dp) the out of range term.

U(Dp) =

{
τunique : L(Dp)

0 : otherwise
(7)

O(Dp) =


1− exp(−|Dp −minD|/σd) : Dp < minD

1− exp(−|Dp −maxD|/σd) : Dp > maxD

0 : otherwise

(8)

The local uniqueness term U(Dp) from eq.7 pe-
nalizes pixels with multiple matches, with L(Dp) true
when a pixel p is mapped to a pixel p + Dp(p) which
has more than one match. Fig.2 shows an example
of uniqueness constraint violation: two pixels (red ar-
rows) in left image scanline map to a single pixel in
right image (red pixel). The out of range term O(Dp)

Figure 2. Uniqueness constraint violation

(eq.8) penalizes disparity values that lie outside a de-
fined search range, where minD and maxD are the
minimum and maximum of the disparity search range,
while σd is the maximum deviation allowed for values
outside the search range. The non-aggregated pixel
similarity function is given by:

cp(Dp) = αc1p(Dp(p)) + c2p(Dp(p)) (9)

c1p(Dp) = αt ·min(|∇Il(p)−∇Ir(p+Dp(p))|, τ bgrad)

+ (1− αt) ·min(|∇Il(p)−∇Ilu(φ(PX))|, τ tgrad)

(10)

c2p(Dp) = αt ·min(χ(Il, Ir, p,Dp), τ bcen)

+ (1− αt) ·min(χ(Il, I
l
u, p,Dp), τ tcen)

(11)

Il is the reference image, Ir and I lu are the tar-
get images. c1p(Dp) is the truncated absolute differ-

ences of gradients using using (τ bgrad, τ
t
grad). c

2
p(Dp) is

the truncated Hamming distance of the census trans-
form using (τ bcen, τ

t
cen), χ computes the census trans-

form and Hamming distance at pixel p with disparity
plane Dp , α balances the pixel-wise cost influence. In
this way the I lu is included to improve the binocular
match cost. The trinocular cost influence is balanced
with αt to prevent points in the image I lu from having
too much influence in case they have changed position,
i.e. reduce outliers. Plane hypothesis generation and
inference is done using the DPI algorithm from [8].

(a) KITTI image 1

(b) Disparity map

(c) Optical flow

Figure 3. Result for KITTI 2012 test image 1.

5 Experimental results

The baseline recovery algorithm is evaluated using
the KITTI 2012 data set, where groundtruth depth
maps are projected to a third image displaced in time
and then optical flow is computed using the recov-
ered motion from our algorithm and compared with
the groudtruth (tab.1). The proposed stereo matching
approach was evaluated using the KITTI 2012 stereo
disparity and optical flow benchmarks, and compared
with a binocular algorithm (tab.2). Our algorithm
is also compared to the state of the art competitors
(the best performing convolutional neural network al-
gorithms and the best performing algorithm not using
convolutional neural networks). The algorithms com-
pared appear in both data set evaluation tables. Our
approach is among the top performers on the KITTI
20121 optical flow (tab.3) and stereo (tab.4) bench-
marks (submitted as TBR). Fig.3 shows an example of
the resulting disparity map and its mapping to optical
flow using the recovered motion (images are displayed
using false color). Tab.1 compares our approach to re-
cover the camera motion with the 6 points algorithm
6PT to recover 3 cameras [6]. The evaluation uses
40 images from KITTI 2012 and measures the average
pixel displacement error of all pixels in the optical flow
evaluated computed using our approach (using every
5th image from KITTI 2012). We report the error of
the initial camera motion estimate on all images (avg.
init.) and error after refinement (avg. ref.) using our
approach. Our algorithm has lower error on initializa-
tion and it is further reduced after refinement, whereas
6PT has a large error on initialization (even after us-
ing RANSAC) also it is slower as it optimizes 24 vs.
8 parameters using our approach. The 6PT algorithm
was refined using our approach. Tab.2 show that us-
ing the baseline recovery and the proposed trinocu-
lar cost gives better results in non-occluded areas, and
also shows that the baseline recovery algorithm works
as intended in images with no moving objects. In the
KITTI benchmark, our algorithm ranks 11th (out of
85), and 15th (out of 89) for KITTI 2012 optical flow
and stereo respectively. The evaluation on KITTI 2012
proved challenging due colored intensity images that

1see supporting material for parameter settings.
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are not properly aligned to the ground truth shape im-
age, causing problems for the aggregation algorithm.
The top performing competitors achieve high perfor-
mance by: using scene specific content to eliminate
ambiguities (e.g. cars in Disp.v2), training specifically
for the data sets (e.g. MCNCC, SDF), or using 2-3
image pairs to estimate disparity (e.g. PRSM, OSF).
By contrast the proposed algorithm achieves top per-
forming results in multiple data set by: using only the
left, right and t + 1 left images, using baseline recov-
ery, not using scene specific features (e.g. cars), and
not computing optical flow directly but instead map-
ping disparities using the recovered motion.

Table 1. Baseline recovery accuracy.

Algorithm avg. init. avg. ref. time secs.
Our 6.47 0.52 0.23
6PT 9.16 0.53 152.91

Table 2. Trinocular vs. Binocular evaluation.

Algorithm
%bad
noc

%bad
occ

avg.
noc

avg.
occ

Our 3.07 4.13 0.69 0.86
bino 3.22 4.12 0.72 0.86

Table 3. Optical flow evaluation. Non-
anonymous entries are used for comparison:
PRSM[18], OSF[11], SDF[2].

Algorithm
%bad
noc

%bad
occ

avg.
noc

avg.
occ

Our11th 4.24 7.50 0.9 1.5
PRSM1st 2.46 4.23 0.7 1.0
OSF5th 3.47 6.34 1.0 1.5
SDF9th 3.80 7.69 1.0 2.3

Table 4. Disparity evaluation. Non-anonymous
entries are used for comparison: Disp. v2[5],
MCNCC[19].

Algorithm
%bad
noc

%bad
occ

avg.
noc

avg.
occ

Our15th 3.09 4.29 0.70 0.90
Disp. v24th 2.37 3.09 0.70 0.80
MCNCC5th 2.43 3.63 0.70 0.90
PRSM10th 2.78 3.00 0.70 0.70
OSF19th 3.28 4.07 0.80 0.90

6 Conclusions

The baseline recovery is to the best of our knowledge
a novel technique to recover camera motion that inte-
grated easily in a DPI dense trinocular algorithm. The
proposed algorithm successfully exploits the temporal
displacement of a third image to accurately recover
camera motion and also delivers high performing opti-
cal flow and disparity estimation results even though
only the general motion is computed, no pre-computed
optical flow is used, and no convolutional neural net-
work (e.g. [19, 5, 2]) or prior 3D models (e.g. cars) are
used.
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