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Abstract

This paper proposes a deep learning-based efficient and compact solution for road scene segmentation problem,
named deep residual coalesced convolutional network (RCC-Net). Initially, the RCC-Net performs dimensionality
reduction to compress and extract relevant features, from which it is subsequently delivered to the encoder. The
encoder adopts the residual network style for efficient model size. In the core of each residual network, three different
convolutional layers are simultaneously coalesced for obtaining broader information. The decoder is then altered to
upsample the encoder for pixel-wise mapping from the input images to the segmented output. Experimental results
reveal the efficacy of the proposed network over the state-of-the-art methods and its capability to be deployed in an
average system.
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1 Introduction
Unlike the traditional object detection and classification
which globally works on an image or a patch, the scene
segmentation is a pixel-wise classification which requires
more accurate boundary localization of each object and
area inside the images. For instance in case of the road
scene segmentation, one needs to precisely separate the
sidewalk for the pedestrian from the road body.
The semantic road scene segmentation, which is the

part of the general image segmentation problems, attracts
a lot of researchers for providing the best solution. Early
works mostly depend on the pixel-wise hand-crafted fea-
tures (e.g., [1]) followed by conditional random field (e.g.,
[2, 3]), the usage of dense depth map [4], or exploitation
of the spatio-temporal parsing [5] for achieving the best
acccuracy.
Since the rise of deep learning for object classification

[6], several attempts were done for designing a deep net-
work architecture for the image segmentation problem.
Most of them follow the encoder-decoder architecture
style (e.g., [7–9]). Another approach takes advantage of
the image patch and spatial prior [10] for attaining better
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scene segmentation. Except [9] which tries to build a small
model size network, all of the above works are suffered
from either very large network size or slow inference time
which make them inconvenient for practical applications.
Here, we aim to establish a compact and effective net-

work for segmenting the road scene. Our approach is
inpired by ResNet [11] which utilizes residual blocks,
allowing it to be stacked into a very deep architecture
without huge degradation problem. In the heart of our
proposed architecture, three different types of convolu-
tional layers are simultaneously coalesced in a residual
fashion and stacked it into an encoder-type network for
altering the receptive field. Hence, more variational func-
tions are enabled to obtain richer information from the
images. Subsequently, a decoder with a lesser architecture
followed by a fully connected convolutional (Full Conv.)
layer is appended to upsample the encoder and fine-tune
the output.
Our contributions are twofold. First, we introduce a coa-

lesced style of the convolutional layers with the residual-
flavored network to build an efficient model for the
semantic road segmentation. Subsequently, we exhibit an
asymmetric encoder-decoder network for reducing the
model size even more, unlike the conventional symmetric
approach used by the previous methods, e.g., SegNet [8].
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The rest of this paper is organized as follows. Section 2
explains the overall architecture of the proposed RCC-
Net. Evaluations against several state-of-the-art meth-
ods are described in Section 3. We then conclude the
paper and give some future directions of the research in
Section 4.

2 Proposed network architecture
Our proposed RCC-Net is established in a deep encoder-
decoder manner. The target is to create a pixel-wise clas-
sification which maps each pixel of the input images into
corresponding semantic class of the road objects. Figure 1
expresses the full architecture of the RCC-Net.

2.1 Initial stage
The idea of constructing small feature maps in the early
stage of the network was heavily inspired by [9] and [12].
For this purpose, a max pooling, an average pooling, and
3 × 3 convolution layers with 13 filters are concatenated,
creating a total 19 dimensional feature maps. Figure 2 rep-
resents the initial stage of the RCC-Net. Using these set-
tings, the first stage of the RCC-Net is expected to reduce
the dimensionality of the input images while extracts the
relevant features for the next stages.

2.2 Residual coalesced convolutional blocks
As the core of our network, we introduce the residual coa-
lesced convolutional (RCC) block which is intemperately
instigated by Inception [13] and ResNet [11] architectures.
The RCC module is composed by projection-receptive-
projection sequences with skip connection. The projection
parts are realized by 1×1 convolution, while the receptive
section consists of a coalesced three different convolu-
tional layers.

Fig. 1 Architecture of RCC-Net

Fig. 2 Initial stage of RCC-Net

The 1 × 1 convolution is meant to aggregate the
activation of each feature in the previous layer. It
is eminent for infering the networks with different
input size. An ordinary, an asymmetric [12], and
a dilated [14] convolution layers are subsequently
appended in a parallel fashion. This coalesced style is
motivated by an assumption that each type of con-
volution layer contributes different receptive field. By
coalescing them, it is expected to have a wider function
to be learned, thus increasing the amount of feature
information.
Let X ∈ R

n be the n-dimensional input of the coalesced
convolution and wi

j ∈ R
i×j is the i × j convolution ker-

nel. The corresponding feature output for the coalesced
convolution can be denoted by

M =

⎡
⎢⎢⎣wi

j ∗ X︸ ︷︷ ︸
ordinary

⋃
w1
j ∗ X︸ ︷︷ ︸

asymmetric

⋃
wi
j ∗d X︸ ︷︷ ︸
dilated

⎤
⎥⎥⎦ (1)

where the last term is the dilated convolution with
the dilation factor d. Figure 3 shows the RCC module
formation.
Actually, it is interesting to investigate the proper way

to combine the convolutional layers. In the experimental
section, we will show how the change on its combination,
by summing and concatenating them, will affect the entire
network results.
The entire encoder contains three stages, where each

stage is made from five RCC modules. The ordinary con-
volution uses 3 × 3 kernel. Dilation factor of the dilated
convolutions is arranged from 2 to 32, while the asymmet-
ric kernels are set to 5 and 7. In between the convolutional
operation inside the RCC modules, a parametric recti-
fied linear unit (PReLU) activation layer and a batch n
are added. We then place a drop out layer at the end
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Fig. 3 Residual coalesced convolutional modules

of RCC modules for regularization. A skip connection
imitating the ResNet [11] is coupled for one RCCmodule.
A max-pooling layer is subsequently appended between
each stage for downsampling the input.

2.3 Decoder
The decoder is constructed by stacking the same RCC
modules as the encoder, except the coalesced convolu-
tional part is now replaced by a deconvolutional layer and
the number of stages is decreased. This setting is moti-
vated by [9], where the role of the pixel recognition should
be done mostly by the encoder. The task of the decoder is
merely to upsample the output of the encoder and adjust
the details. A fully connected convolutional (Full Conv.)
layer is thus appended behind the decoder for performing
pixel-wise mapping.
As summary of the proposed network, Table 1 exhibits

the configuration of the RCC-Net, with 3-channel input
images and 11 classes of the road scenes.

3 Results and discussions
In this section, the efficacy of our proposed architecture is
demonstrated against several state-of-the-art methods on
the road scene segmentation problems. All implementa-
tions of the proposed algorithm were done on a Linux PC
(Ubuntu 16.04, Core i7, 32GB RAM), with a GTX 1080
GPU and Torch7. Training was performed using Adam
optimization [15] for 200 epoch with learning rate 10e-3,
momentum 0.9, and batch size 8.

3.1 CamVid dataset benchmark
The performance of the proposed RCC-Net architec-
ture is benchmarked on CamVid road scene dataset [16],

Table 1 Configuration of RCC-Net

Stages
Convolution

# RCC
Ordinary Asymmetric Dilated

Input 3 × 480 × 360 n/a

Initial 19 × 240 × 180 n/a

Encoder 1 3 × 3 5 × 1; 1 × 5 2;4;8;16;32 5

Encoder 2 3 × 3 5 × 1; 1 × 5 2;4;8;16;32 5

Encoder 3 3 × 3 7 × 1; 1 × 7 2;4;8;16;32 5

Decoder 1 3 × 3 deconvolution 3

Decoder 2 3 × 3 deconvolution 2

Full Conv. 11 × 480 × 360 n/a

which consists of 367 training and 233 testing images
with the resolution of 480 × 360. The CamVid dataset
has 11 classes depicting different objects which frequently
appear on the street, such as road, cars, pedestrian,
and building. Table 2 shows the comparison of sev-
eral state-of-the-art methods on the CamVid road scene
dataset.
From Table 2, the proposed RCC-Net (concatenated

version) exceeds the existing state-of-the-art methods in
four different class categories and the overall class aver-
age accuracy. Three-out-four winning categories consti-
tute the small area and objects with lesser training data.
It means our proposed method is capable for capturing
objects which are difficult to segment. The best class aver-
age accuracy and a comparable intersection-over-union
(IoU) imply the RCC-Net has a high consistency for
achieving good results in each category.
One notable result is that the RCC-Net has the best

capability for recognizing the sidewalk. It is very impor-
tant for an autonomous car to differentiate the road and
the sidewalk, so that the safety of the pedestrians are guar-
anteed. Figure 4 depicts some examples of the RCC-Net
prediction output on the test set of the CamVid dataset.
As we have noted in the previous section, it is intriguing

to examine different ways of coalescing the convolutional
layers. Both summing and concatenated convolutional
layers of the RCC-Net surpass the other methods. Never-
theless, the concatenated version of RCC-Net has advan-
tages over the summing one. One interesting result is the
pedestrian segmentation of the summing version of the
RCC-Net achieves the highest accuracy (70.6%). This fact
may lead to a promising application in the future research,
e.g., to determine the salient regions for the pedestrian
detection.

3.2 Test on wild scene
To conceive the RCC-Net capabilities, we subsequently
feed the network with some difficult road scenes
taken from the Internet without re-train the network
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Table 2 Comparison on the CamVid dataset [16] using 11 road scene categories (in percent)

Method Sky Building Road Sidewalk Car Pedestrian Bicyclist Tree Fence Column-pole Sign-symbol Class avg. Class IoU

Local label descriptor [1] 88.8 80.7 98 12.4 16.4 1.09 0.07 61.5 0.05 4.13 n/a 36.3 n/a

Boosting+pairwise CRF [2] 94.7 70.7 94.1 79.3 74.4 45.7 23.1 70.8 37.2 13 55.9 59.9 n/a

Boosting+detection+CRF [3] 96.2 81.5 93.9 81.5 78.7 43 33.9 76.6 47.6 14.3 40.2 62.5 n/a

Dense depth map [4] 95.4 85.3 98.5 38.1 69.2 23.8 28.7 57.3 44.3 22 46.5 55.4 n/a

Super parsing [5] 96.9 87 95.9 70 62.7 14.7 19.4 67.1 17.9 1.7 30.1 51.2 n/a

SegNet-basic [8] 91.2 75 93.3 74.1 82.7 55 16 84.6 47.5 44.8 36.9 62 47.7

SegNet [8] 92.4 88.8 97.2 84.4 82.1 57.1 30.7 87.3 49.3 27.5 20.5 65.2 55.6

ENet [9] 95.1 74.7 95.1 86.7 82.4 67.2 34.1 77.8 51.7 35.4 51 68.3 51.3

RCC-Net (sum) 95.2 70.1 94.1 90.1 82.6 70.6 45.7 81.2 51 52.3 35.4 69.8 52.6

RCC-Net (concatenated) 94.3 71.8 92.6 92.7 79.3 57.7 65.6 80.5 35.7 57.4 59.4 71.5 53.3

The bold values show the highest accuracy for each category

model obtained from the previous CamVid benchmark.
From Fig. 5, the RCC-Net produces qualitatively good
segmentations, even for the scenes which are heavily clut-
tered. It also means the proposed network is able to
transfer the model information to the new environment.

3.3 Computation time andmodel size
On GTX 1080, the RCC-Net took 25.5 ms for the for-
ward inference of 480×360 images, including fetching and
displaying the image. It is also able to run one inference
on a car-deployable mini PC Zotac EN-761 in 67.5 ms
with the network size of 4.9 MB, which draws out the
power consumption around 62.4 watt. It means the pro-
posed network is fast and small enough to enable the
Advanced Driver Assistance System (ADAS). We plan to

run the network on a GPU-based embedded system, such
as NVIDIA Jetson TK1 for further investigation1.

4 Conclusions
An efficient and compact solution for solving the semantic
road segmentation problem has been presented. By coa-
lescing different types of convolutional layers and stacking
them in a deep residual network style, we achieve the
high-quality results on the semantic road segmentation
with relatively small model size, surpassing the existing
state-of-the-art methods. In the future, we would like to
examine the performance of our RCC-Net on the boarder
problems, such as medical images and other challenging
image segmentation dataset, for understanding its capa-
bilities to solve more general segmentation applications.

Fig. 4 RCC-Net results on CamVid [16] test set. (color code: red road, yellow sidewalk, purple car, cyan pedestrian, blue building, green tree, white sky,
and black void)
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Fig. 5 RCC-Net results on wild scenes

Endnote
1 The progress of RCC-Net performance on the embed-

ded system can be seen at http://te.ugm.ac.id/~igi/?page_
id=826
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