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Abstract

Candide-3 is a well-known model, used to represent
triangular meshes of human faces. It is common to
only estimate 17 to 21 of the 79 model parameters. We
show that these are insufficient to fit model vertices to
facial feature points with low error and if more param-
eters are estimated, the model mesh deforms to unnat-
ural configurations. To overcome this problem, we pro-
pose a novel solution: Given facial feature points, we
propose to estimate the model parameters in subsets in
which they are uncorrelated. Additionally we present a
term to penalize topologically incorrect triangular mesh
configurations. As a result the average mean squared
error between facial feature points and model vertices
is reduced by 90%, while face topology is preserved.

1 Introduction

Candide [1, 2] is a parametrized model consisting of
3D points, arranged in a triangular mesh, representing
a human face. The mesh configuration is altered by
the model parameters, which are divided in shape and
action parameters. Later the MPEG-4 facial anima-
tion standard [4] introduced a standard nomenclature
for facial points (FP) and facial animation parameters
(FAP). The definition of the updated Candide Model,
Candide-3 [3] includes references to corresponding pa-
rameters of the MPEG-4 facial animation standard.
This model is often used for face tracking [5, 6, 7],

where usually only 6 to 9 of the 65 action parame-
ters are used. But especially for 3D face reconstruc-
tions, using a few parameters often causes large errors
between projected mesh vertices and provided facial
feature points. In this case the mesh does not approx-
imate the shape of the face well, because it violates
constraints resulting from topology of human faces.
Using the existing algorithms, which neglect proper

3D perspective projection, with a larger set of parame-
ters causes numerical instabilities, which in turn cause
even more topological errors. To prevent this, we pro-
pose to divide the parameters in uncorrelated subsets
and estimate them separately and consecutively. Fur-
thermore, we propose an algorithm based on nonlinear
parameter estimation using a prior to prevent mesh
configurations which violate the topology of human
faces. One result of our algorithm is displayed in Fig-
ure 1. To summarize, our contributions are:

• Using subsets of uncorrelated parameters in the
estimation procedure

• Nonlinear optimization including a topology pre-
serving penalty term

• A full perspective camera model instead of the
weak perspective model

The paper is organized as follows: In Section 2 pre-
vious work is described, including model definition and

two algorithms for parameter estimation. In Section 3
we present our algorithms. Experimental evaluation of
all approaches follows in Section 4. Discussions can be
found in Section 5.

(a) (b) (c)

Figure 1: (a) Original Image of MUCT Face Database.
(b) Image with corresponding Facial Feature Points.
(c) Resulting model mesh retrieved with our algorithm.

2 Previous Work

In this paper we refer to Candide-3 introduced by
Ahlberg [3], but as there are slight differences in lit-
erature, we point out that the version used here is
Candide-3.1.6.

2.1 Candide-3 - Model Definition

Candide-3 [3] is defined by a set of 113 vertices, con-
nected by 184 triangles; 14 shape parameters and 65
action units enable to change the model mesh configu-
ration. As there are some vertices not included in any
triangle, we end up with a total of 104 vertices.
We define the initial position of stacked 3D model

vertices as v̄ ∈ R
3N . This standard configuration

can be changed by adding a matrix-vector product
of sparse shape and action matrices S ∈ R

3N×14,
A ∈ R

3N×65, weighted by their parameter vectors
s ∈ R

14 and a ∈ R
65. As a result any 3D

facial configuration v̂ ∈ R
3N is defined as v̂ =

(v̂1,x, · · · , v̂N,x, v̂1,y, · · · , v̂N,y, v̂1,z, · · · , v̂N,z)
T
.

v̂ = v̄ + Ss+Aa (1)

Let one of these vertices be v̂k ∈ R
3, k = 1, . . . , N ,

then vk defines the globally transformed v̂k as

vk = R C v̂k + t (2)

where R defines a 3D rotation matrix (with rotation
angles θx, θy, θz), C a scaling matrix (with scaling pa-
rameters cx, cy, cz ) and t = (tx, ty, tz)

T ∈ R
3 a trans-

lation vector. As the global motion parameters are as-
sumed to be equal for all vertices, Eq. (2) is extended
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to a formulation for all model vertices:

v = (R⊗ IN )︸ ︷︷ ︸
=Q

(C ⊗ IN )︸ ︷︷ ︸
=D

v̂ + t⊗ 1N︸ ︷︷ ︸
=d

v = Q D
(
v̄ + Ss+Aa

)
+ d (3)

where IN ∈ R
N×N is the unit matrix, 1N ∈ RN only

contains ones and ⊗ defines the Kronecker product.
To fit the model to any individual face, the intro-

duced 79 local (s, a) parameters of Eq. (1) and 9 global
parameters (θx, θy, θz, cx, cy, cz, tx, ty, tz) of Eq. (2)
have to be estimated.

2.2 Estimation of Model Parameters

Given a set of Nf facial feature points in 3D
f ∈ R

3Nf or in 2D f ′ ∈ R
2Nf , we assume correspon-

dences to a subset I of Candide-3 model vertices, which
are known as vI ∈ R

3Nf and v′I ∈ R
2Nf . Please note

that the definition of v′I differs between algorithms. To
estimate the parameters of the model, the square of the
sum of the euclidean distances between model vertices
and feature points is minimized:

min
p

‖vI − f‖2 or min
p′

‖v′I − f ′‖2 (4)

with respect to the global motion parameters defined
in Section 2.1 and the shape and action parameters s
and a, combined in parameter vector p or p′.

2.2.1 One-step solution

Ahlberg [8, 9] presents a one-step solution to esti-
mate all necessary parameters. Under the assump-
tions that (1.) shape and action parameters are ap-
plied to the scaled version of the initial model vertices
v̄, (2.) only small rotations occur and (3.) shape and
action units (S and A) are invariant to rotation, the
original model Eq. (3) can be approximated as

v ≈ ṽ = Q̃v̄ +Dv̄ + Ss+Aa+ u (5)

with Q̃ = R̃⊗ IN (6)

and R̃ = rxR1 + ryR2 + rzR3 + I3 (7)

where R1, R2, R3 are infinitesimal rotation matrices.
In case facial feature points are provided in 3D, the

euclidean distance between model and feature points
can be easily calculated, however if provided in 2D,
the last coordinate of the model vertices vI is dropped
to obtain v′I , which can be regarded as orthographic
projection.

2.2.2 Weak Perspective Projection

A weak perspective projection model is used in [9, 5].
Let z be a scaling factor, d2 = (tx, ty)

T ⊗1N ∈ R
2N ,

K = [1, 0, 0; 0, 1, 0] ⊗ IN and Q be as in Eq. (3). We
can then rewrite Eq. (3) as

v′ = (z + 1) K Q (v̄ + Ss+Aa) + d2 (8)

Whereas the method is used to minimize a distance
between input texture and a synthesized model texture

(a) (b)

Figure 2: Figures (a) and (b) show the correlation ma-
trices for shape and action matrices S and A. Dark
values indicate high absolute values of the correspond-
ing correlation coefficient.

[9, 5], we apply this approach to minimize the distance
introduced in Eq. (4) with 2D facial feature points.
To estimate the parameters of the models defined by

Eq. (5) and Eq. (8) the authors [8, 9, 5] suggest to first
estimate all parameters jointly, then refine the result
by assuming shape parameters as fixed, only adapting
global and action parameters. However usually only 6
out of 65 action parameters are estimated. This restric-
tions are made to overcome problems caused by corre-
lations in parameter space. As suggested in [5] corre-
lation can be removed by application of PCA. Causing
a new parameter space, where standard facial anima-
tion parameters (FAPs) are not represented anymore
and leading to global instead of local deformations, we
avoid usage of PCA here.

3 Improved Model Estimation

3.1 Projective Camera

To improve 3D reconstruction, we replace the weak
perspective projection of Eq. (8) by a projective cam-
era model. By estimation of shape and action param-
eters, we obtain an estimate for the 3D model vertices
v̂ of Eq. (1). Using the 3D model vertices and the cor-
responding 2D facial feature points, camera parame-
ters can be estimated by Direct Linear Transformation
(DLT) [10]. We alternate estimations of model and
camera parameters in our optimization procedure.

3.2 Parameter Subsets

Analyzing the matrices S and A defined in Eq. (1),
we found that some columns are correlated. Figure 2
shows the correlation matrices for S and A, i.e. each
entry of the two matrices shown in Figure 2(a) and 2(b)
is computed by the correlation between two columns
of S and A. As can be seen in Figure 2(b), high cor-
relation values occur especially for action parameters.
We therefore propose to divide the shape and action
parameters into subsets, in which they are pairwise
uncorrelated. We define CA ∈ R

Na×Na as correlation
matrix of A, where the element CA(i, j) contains the
pairwise correlation coefficient of parameters i and j.
Parameters ai and aj , i �= j are assumed to be uncor-
related if |CA(i, j)| < λc. We collect uncorrelated pa-
rameters in sets Uk, which are disjoint, but if united,
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contain all parameters. If |CA(i, j)| ≥ λc, ai and aj
will not be elements of the same Uk. If one parame-
ter is correlated with all the others, it defines its own
set. The sets Uk for uncorrelated shape parameters are
computed analogously.
For Optimization, the camera parameters are esti-

mated first, then the parameters in the sets Uk are
estimated independently and consecutively. The esti-
mation of camera parameters is alternated with the
ones of Uk.

3.3 Topological Constraint

Topologically incorrect mesh model configurations
occur, if more than six action parameters are estimated
with the algorithms described in section 2.2.1 or 2.2.2.
Figure 3(f) shows one example of such a mesh. As
a result of unconstrained optimization, model vertices
without corresponding facial feature points move un-
restricted and cause large topologically unsuitable tri-
angles in the model mesh.
To avoid large differences between original and

adapted model topology, we introduce a constraint
which penalizes deviations of the direction of surface
normal vectors compared to triangles of the original
model configuration.
The initial model vertex configuration is known as

v̄ from Eq. (1). We define the corresponding set of

triangles as T = {T 1, . . . , TNt}, analogously T̂ is the
set of triangles for v̂ of Eq. (1). As for each triangle Tk

a surface normal vector n(Tk) with ‖n(Tk)‖ = 1 can be
computed, we define our topology preserving penalty

g
(
T̂
)
=

Nt∑
k=1

∥∥∥n(
T̂k

)
− n

(
T k

)∥∥∥2 (9)

Adding this to the minimization problem defined in
Eq. (4), we obtain

min
p

‖v′I − f ′‖2 + λt · g
(
T̂
)

(10)

where p contains parameters for shape, action and
global motion as in Eq. (4), the parameter λt controls
how strictly the estimated mesh should adhere to the
topology of the template mesh model.

4 Experiments

4.1 MUCT Face Database

The MUCT database [11] provides a total of 3755
face images of 276 individuals shown in five camera
views and ten light settings. Providing the complete
set of 76 facial landmarks, we chose frontal view im-
ages and one specific light setting, leading to 104 test
sets. From the provided landmarks, we picked 49 corre-
sponding to Candide-3 model vertices, which are used
to estimate local and global parameters for model fits
by algorithms described in sections 2.2 and 3. The cho-
sen facial feature points with corresponding matched
model vertices are displayed in Figure 3(a) to (d).

(a) A6-WP (b) A-WP (c) WP-S
(d)

DLT-S
λ = 10

(e) A6-WP (f) A-WP (g) WP-S
(h)

DLT-S
λ = 10

Figure 3: Different face model configurations, as a re-
sult of application of different algorithms: The first
row shows the distance of provided facial feature points
(blue plus-sign) compared to the matching model ver-
tices (red cross) obtained by the corresponding al-
gorithms. The second row shows the corresponding
model mesh configuration.

4.2 Quantitative Quality Measure

For some algorithms the resulting mean squared er-
ror (MSE) indicates an excellent fit, however it only
takes the distance between corresponding facial feature
points and model vertices into account, while model
vertices without correspondence are not included. As
can be seen in Figure 3(b) there is a relatively small
error between facial feature points and model vertices,
however this result corresponds to an unfavorable mesh
configuration shown in Figure 3(f). We observed that,
compared to the initial model configuration v̄, some
triangles of v̂ change the direction of their surface nor-
mals drastically, i.e. by more than 90 degrees. This
effect will further be called a “flip” of a triangle, the
total amount of flip events Eflip. Additionally the to-
tal amount can be replaced by the sum of triangle areas
Eflipw, to which a flip occurred. To summarize: the
lower the values of MSE, Eflip and Eflipw, at the same
time, the better the model fit.

4.3 Evaluation

Some shape or action parameters only influence
model vertices for which no corresponding facial fea-
ture point is available. Therefore we restrict the pa-
rameters to those, which alter at least one component
of the model vertices vI , leading to a total of 38 of
65 action and 12 of 14 shape parameters, so 50 of 79
model parameters are estimable.
In the following we denote the algorithm defined by

Eq. (5) as A, and Eq. (8) as A-WP. If only 6 action pa-
rameters are estimated: A6 and A6-WP, respectively.
The abbreviation DLT refers to algorithm of section
3.1, adding “S” refers to the usage of subsets described
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(a) MSE (b) Eflip (c) MSE (d) Eflip

Figure 4: Illustration of performance of algorithms. (a)
and (b) show MSE and Eflip for previous and improved
algorithms. Effects of the topological penalty term are
shown in (c) and (d): Higher penalty weights λt in-
crease the MSE values (slightly), while Eflip decreases
considerably. Red crosses indicate outliers.

in section 3.2, while an additional λ denotes applica-
tion of the constraint defined in Eq. (9).
We found that estimation of six action parameters

with algorithms A6 and A6-WP leads to a large MSE.
These are lowered by incorporating more action pa-
rameters with A and A-WP, but at cost of larger Eflip

values, including unfavorable mesh configurations as
can be seen in Figure 3(f). These high Eflip values are
lowered by using uncorrelated parameter subsets in the
estimation procedure, i.e. WP-S and DLT-S, both lead
to better results than WP or DLT, alone; one example
is illustrated in Figure 3(f) and (g). Furthermore we
found that DLT induces lower MSE than using WP
for all experiments, i.e. DLT outperforms WP, which
is illustrated in 4(a).
We tested different values for λt introduced in

Eq. (9). Figure 4(d) shows the expected effect that
increasing λt decreases the number of flips Eflip. As
expected the MSE increased slightly for λt = 0.1, 1, 10,
which can be seen in 4(d). λt = 100 caused a high in-
crease of MSE, as the model mesh is stressed to stay
in original configuration. We received best results for
λt = 10. For λt = 1, 10 algorithms DLT-S and DLT-S-
λ lead to comparable results of good quality, in terms
of low MSE and Eflip-values. However DLT-S-λ is su-
perior to DLT-S in terms of lower Eflipw values, which
is illustrated in Figure 5.

5 Discussion

Previous algorithms only estimated a part of the pa-
rameters provided by the Candide-3 face model, lead-
ing to large errors and unsatisfactory results for 3D-
face reconstruction. We show that increasing the num-
ber of parameters leads to unfavorable model mesh
configurations, which we avoid by estimating the shape
and action parameters in subsets of uncorrelated pa-
rameters. Furthermore we introduce a topological
penalty which favors mesh configurations, implying
surface normals close to the initial model, which im-
proves the results even more. An additional decrease
of MSE was reached by replacing the weak perspective
projection by a perspective camera model.
Compared to the original algorithm A6-WP, our ap-

proach DLT-S-λ, reduces the mean MSE from 98.95
to 9.42 and mean Eflip from 19.68 to 1.05, which is a
decrease of over 90% for both criteria.
Though we demonstrated our algorithm on facial

feature points only, the adaptations are applicable to

(a) MSE

(b) Eflipw

Figure 5: Results obtained by application of algorithms
A-WP (red stars), DLT-S (blue triangles) and DLT-S-λ
(green plus signs) (λt = 10) on 108 individuals (x-axis)
of MUCT face database. (a) MSE-values of A-WP
lie always over the ones obtained by algorithms DLT-
S and DLT-S-λ, while DLT-S outperforms DLT-S-λ,
slightly. (b) Eflipw-values are considerably lower for
DLT-S-λ, compared to DLT-S. (Figure is best viewed
in color)

textures. This will be done in future work.
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