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Abstract

We present a marker-less human motion capture
system that uses multiple RGB-D cameras to estimate
the 3D posture of multiple people online at interactive
rates in an indoor workspace measuring approximately
5 m × 5 m × 2 m. An interesting aspect of this work
is how we handle the self-contact problem. We propose
a novel multi-view voting scheme (MVS) to fuse mea-
surements from different 2D or 3D algorithms. As a
proof of concept, we present an MVS implementation
that fuses optical flow images from each view and la-
bels points in the current instance using the previously
estimated posture. These labels allow us to trim invalid
edges in a geodesic distance graph model and improve
localization of geodesic extrema corresponding to the
head, hands and feet for posture estimation. The sys-
tem performs at ∼8.3 Hz with a cumulative latency of
∼570.40 ms and a projected median localization error
of ∼0.149 m. In addition, we propose a new multi-
view Kinect and Vicon publicly accessible motion cap-
ture dataset for validation and benchmarks.

1 Introduction

The context for this work is a system, developed
jointly under the project heading CHARM1 for safely
controlling a robotic assistant in a workspace shared
by one or more human workers on a manufacturing
assembly line. The focus of this research is on the hu-
man tracking module whose task is to use a commodity
RGB-D camera network to detect, track and estimate
the workers’ posture at interactive rates.
Depth images simplify the foreground segmentation

task and, instead of sparse marker-based features, pro-
vide dense point clouds of surfaces. However, if objects
have the same depth and are touching, it is difficult to
determine where one object ends and another begins
using solely the depth data. Our goal is to leverage
the complimentary strengths of both RGB and depth
modalities in order to resolve ambiguities due to such
contacts.
We define three classes for what we refer to collec-

tively as the contact problem: 1) Subject-subject con-
tacts occur when multiple subjects in the scene touch
each other e.g. during a handshake; 2) Subject-object
contacts occur when the subject touches objects in the
scene e.g. manipulating tools; and 3) Self-contacts oc-
cur when one of the subject’s body parts occludes or
touches another body part e.g. hand on hip. These un-
desired and unavoidable contacts hinder accurate limb
segmentation which in turn causes the posture estima-
tion to deteriorate. Although the focus of this paper is
on addressing the self-contact problem, our new pub-
licly available dataset contains many instances of all
three contacts.

1Collaborative, Human-focused, Assistive Robotics for Man-
ufacturing, a joint project under the NSERC CRD program with
the participation of General Motors Canada, the University of
British Columbia, Laval University and McGill University.

1.1 Related work

In the literature, several papers use multiple RGB-D
cameras for human motion capture [1] using techniques
such as overlapping silhouette analysis [2], particle fil-
ters [3] and Kalman filters [4] to combine measure-
ments across all the cameras. In this paper, we adopt
a different data-driven approach based on the use of
a geodesic distance graph (GDG), a popular graphical
representation [5, 6, 7, 8] of the point cloud correspond-
ing to the subject being tracked that, to the best of our
knowledge, has only been used for 2.5D motion capture
with a single RGB-D camera.
In a typical GDG, each vertex corresponds to a point

in the subject’s point cloud and edges connect neigh-
bouring vertices. In this paper, we take the additional
formulation as in [6, 8] such that each edge stores a
weight corresponding to the Euclidean distance be-
tween the two vertices. Where the geodesic distance
is defined as the distance between two points along the
surface of an object, in the GDG the geodesic distance
is approximately the sum of the edge weights along
the shortest path from one body part to another. The
geodesic distance is a useful metric between it is gen-
erally stable and posture invariant. Furthermore, the
GDG is a useful representation because it facilitates
locating geodesic extrema corresponding to the five ex-
tremities of the body (the hands, feet and head), use-
ful for human posture estimation. Unfortunately, the
self-contact problem causes the GDG construction to
create invalid edges between vertices belonging to seg-
ments of the body that are not adjacent. When this
occurs, geodesic extrema extraction may yield unex-
pected results and complicate localization of the de-
sired extremities.
A number of recent papers use a naively constructed

GDG in which edges are created between each vertex
and all neighbours located within a maximum search
radius. As a result, clever algorithms are required to
deal with the contact problem such as using additional
orientation and depth image patch descriptors [5], us-
ing a weighting strategy that depends on the quality of
the feature extraction and of the local optimization [7],
or using the Affine Scale Invariant Feature Transform
(ASIFT) to track geodesic extrema [8].
In [6], Schwarz et al. present a method for trimming

invalid edges in the GDG. If extremities go missing due
to self-contacts, then the optical flow is used to esti-
mate the current positions of missing segments based
on their last known positions. Specifically, an edge is
removed if one vertex lies on the occluding segment and
the other lies on the occluded segment. Unfortunately,
their concept of occluding and occluded segments does
not apply to the the multi-view 3D case and their Mat-
lab implementation performs at 2 Hz for Kinect data
and 6 Hz for lower resolution Time of Flight data. In
this paper, we extend their approach to multiple views
and improve the performance to interactive rates for
multiple Kinects. Furthermore, we make available a
novel and comprehensive dataset containing the raw
RGB-D data from four Kinects, complete which cal-
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ibration parameters, and the skeleton ground truth
provided by a commercial marker-based Vicon motion
capture system.
The remainder of the paper begins in Section 2 with

a description of a novel algorithm for computing an im-
proved GDG that specifically addresses the self-contact
issue. This is followed in Section 3 by a set of exper-
iments using our new dataset that demonstrates the
preliminary results of our algorithm in a real-world
context. Finally, the paper concludes in Section 4 with
some observations and a pointer to future work.

2 The Human Tracking Pipeline

Using multiple orthogonal views reduces occlusions,
requires simpler a priori assumptions and allows the
subject the freedom to face any direction. Unfortu-
nately, many 2.5D algorithms do not apply directly to
3D and the use of multiple views complicates the data
acquisition and online processing performance of the
system. Using calibrated RGB-D cameras and com-
modity hardware, we propose an online multi-view vot-
ing scheme (MVS) that operates at interactive rates,
combines measurements from multiple sources and
generates a refined geodesic distance graph (GDG).
This new GDG is robust to self-contacts, improves the
localization of extremities and ultimately improves the
posture estimation. As shown in Fig. 1, the algorithm
is implemented as a pipeline containing a feedback loop
where the previously estimated posture is used in com-
bination with the optical flow in the intensity images
to first label points in the current point cloud and then
reject edges that fail a segment adjacency constraint.
In our sensor network, we use four Microsoft Kinect

cameras placed around the work cell in an approxi-
mately orthogonal configuration. For ground truth, we
use the data provided by the Vicon marker-based mo-
tion capture system [9]. Offline, we calibrate the net-
work so that we can register all the data into a common
reference frame using the same approach as Kramer et
al. [10] and using standard stereo camera calibration
techniques [11]. As such, we divide the calibration task
into three steps. First, we intra-calibrate the Kinects
by covering the IR emitters so that the checkerboard
corners can be accurately located in the IR camera and
computing both the intrinsic and extrinsic parameters
of the RGB and IR cameras of each Kinect. Next,
with the IR emitters uncovered, we world-calibrate as
many Kinects as possible by obtaining the extrinsic pa-
rameters between the RGB camera of each Kinect and
the world reference frame. The Vicon is also world-
calibrated to the same world frame at this time by
carefully aligning the Vicon calibration wand with the
checkerboard at the world origin. Finally, we inter-
calibrate the Kinects by obtaining the extrinsic param-
eters between the RGB cameras of Kinect pairs.
When the system is first powered on, the first online

step is to model the background in order to reduce the
number of pixels that need to be projected into the
world reference frame. We initialize and update the
background model in each depth image frame using
the Minimum Background algorithm [12]. Next, using
both the background model and the calibration param-
eters, we segment and register the foreground by pro-
jecting the foreground pixel from each Kinect into the
common world reference frame. Then we downsample
the resulting foreground point cloud by applying a 3D
voxel grid and perform euclidean clustering [13].
If there are two subjects, then we expect to obtain

two relatively large clusters corresponding to each sub-
ject. In practice, due to noise, other objects in the

scene or subject-subject contacts, the number of clus-
ters varies. To help identify human blobs, we compute
the three principal axes of inertia lengths and the con-
vex hull volume [14] of each cluster. Then we track and
label blobs with stable features as human if they com-
pare to previously measured values. Although princi-
pal axes of inertia are primarily for rigid bodies, we
find that they are relatively stable and well suited for
identifying human blobs, especially when the subject
adopts an upright or standing posture such as during
the initial posture.
On the first pass, we construct the GDG naively

as described in Section 1. Compared to the 2.5D ap-
proach, we use a 3D search radius in metres instead
of a 2D search radius in pixels. Regarding extracting
geodesic extrema in 3D, the geodesic distance thresh-
olding approach by Schwarz et al. [6] only works if the
blob’s centroid is added to GDG along with the neces-
sary edges that connect the centroid to points on the
torso. However, we prefer not to rely on the centroid
because a) it is highly sensitive to vertical hand posi-
tions, b) the search radius must be tuned to the sub-
ject’s torso and c) we want to minimize the number
of edges created for performance reasons. Instead, we
use the Accumulative Geodesic EXtrema (AGEX) [5]
algorithm to locate exactly five geodesic extrema cor-
responding to the extremities similar to Brandao et
al. [8].
Similar to Schwarz et al. [6], we label the five

geodesic extrema called primary landmarks corre-
sponding to the head, hands and feet. Assuming a
human kinematic model with 15 segments of fixed and
pre-determined segment lengths totalling 32 degrees of
freedom (DOF), we initialize the posture estimation
when the subject adopts an unambiguous T-pose where
the arms are out the side and slightly offset to the front
for left-right side disambiguation. Then we obtain ad-
ditional landmarks called secondary landmarks corre-
sponding to wrists, elbows, knees, ankles and neck by
computing the centroid of the ring of points obtained
by considering the points located at a pre-determined
geodesic distance offset from the respective primary
landmark.
To estimate the skeleton posture, we first assume

a shape model where each segment is a capsule de-
fined by a radius. Compared to other geometric
shapes such as cylinders, capsules allow the quickest
and simplest intersection detection. Then we perform
the Levenberg-Marquardt nonlinear least squares min-
imization algorithm [15] to minimize the cost function,
which currently consists of a landmark fitting term and
a segment intersection term. Formally,

ε(q, t) =
L∑

l=1

‖pt
l − fl(q)‖22 +

S∑

i=1

S∑

j=1
j �=i

cij(q)
2, (1)

where L is the number of landmarks, S is the number
of segments, q is the vector of parameters, pt

l is the
position of the l-th landmark at time t, fl : R

d → R3

is the forward kinematic function that computes the
position of the l-th landmark given q, cij(q) = ri+rj−
dij(q) if segments i and j intersect otherwise cij(q) =
0, ri is the capsule radius for segment i and dij(q) is the
distance between the two capsule segment axes. The
posture obtained can be used in higher level processes
such as gesture or activity recognition. The remaining
steps, described next, detail the novel MVS feedback
loop for producing a refined GDG that is robust to
self-contacts.
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Figure 1. System data flow diagram

2.1 Multi-view voting scheme

The objective of the MVS is to label each point in
the current blob with a segment (e.g. head, torso, etc.)
using the previously estimated posture and while fus-
ing measurements from multiple information sources
(e.g. viewpoint or low-level vision algorithm). Each
measurement or information source provides a single
vote and votes are combined to produce a label. As
a proof of concept, our preliminary MVS implementa-
tion fuses the optical flow images produced from each
Kinect RGB camera.
We start by using the human shape model and the

previously estimated posture to label each point in the
previous blob with a segment. If a point lies within
more than one segment candidate due to intersections,
then we choose the closest segment as label. Note,
some points may remain unlabelled because the shape
model is a coarse approximation of the true shape or
because of errors in the skeleton fitting. Next, for each
Kinect RGB camera, we project all points of the cur-
rent blob and all labelled points of the previous blob
into the image reference frame. Then we use the chain
of optical flow images from tprev to tnext, which typi-
cally consists of 2-3 frames due to computational laten-
cies, to estimate the current location of labelled points
of the previous blob. Finally, we determine the clos-
est segment for each point of the current blob and if
the distance is below a threshold in pixels equal to a
search radius (15 pixels) plus an uncertainty based on
the number of flow frames used (2 times the number of
frames), then a vote is registered otherwise the camera
does not vote. When all the cameras have voted, the
segment with the most votes is the point’s label. In
the case of a tie, the closest segment in 3D is chosen
from among the candidates. If a point has no votes,
then the closest segment in 3D is chosen as long as it
is within a maximum distance.

2.2 Refined geodesic distance graph construc-
tion

To construct the refined GDG, we perform a number
of checks before allowing an edge to be created. Ex-
plicitly, for each vertex, we search neighbouring ver-
tices and reject edges if: a) both the vertex and its
neighbour are labelled but not adjacent or do not be-
long to the same segment, b) the vertex is labelled
but its neighbour is unlabelled (the reverse is accepted
however) or c) if the vertex is unlabelled, its neigh-
bour is labelled, but the distance between the two is

greater than the distance between the vertex and an-
other labelled neighbour with a different label. The
result is a refined graph with fewer edges between non-
adjacent segments as shown in Fig. 2. To close the
feedback loop, we use the refined graph instead of the
naive graph for locating geodesic extrema on the next
iteration.

3 Experimental Results

To validate our algorithms and provide a public data
set for benchmarks, we recorded 11 sequences with
foreground and Vicon data and 8 sequences with the
full and raw RGB-D data from four Kinects and Vi-
con data complete with calibration parameters that we
make available online at [16]. While the former is easier
to use because no calibration parameters are required,
it only allows experimenting with 3D algorithms such
as ICP or range flow. Conversely, the latter requires
more work to register the data into the common world
reference frame, but permits experimenting with the
full range of 2D algorithms (e.g. stereo, SIFT, optical
flow) in addition the 3D algorithms aforementioned.
The sequences vary in the number of workers (1 or 2)
and in the amount and type of contacts (subject, ob-
ject and self).
First, we present our sensor network calibration re-

sults using the standard root mean squared (RMS)
reprojection error metric in pixels. For the intra-
calibration, we obtained an average RMS error of 0.301
pixels for the Kinect’s RGB camera intrinsics, 0.260
pixels for the Kinect’s IR camera intrinsics and 1.266
pixels for the extrinsics between the two cameras. For
the subsequent world calibration error, we got an av-
erage RMS error 1.03 pixels. Finally, for the inter-
calibration, the average RMS error was 0.988 pixels
between Kinect RGB camera pairs. While the real-
world error increases with the distance from the cam-
era, we observe that a pixel error of 1 translates into
approximately 1-2 cm in the real world for a typical
workcell. Note also that to project the depth pixel
into the world reference frame, the total reprojection
error is the sum of the intra-calibration extrinsic error
from IR to RGB and the world-calibration error from
RGB to world.
Next we compare the posture estimate to the ground

truth skeleton provided by the Vicon (Fig. 4). For
qualitative evaluation, we invite the reader to view the
accompanying video demo available online [17]. For
the quantitative evaluation, we compute the euclidean
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Figure 2. Geodesic distance graph edges: a) Naive (left, note the invalid edge near Worker 1’s feet) b) MVS
refined (right)

Figure 3. Median posture estimation errors compared to Vicon skeleton

distance between the Vicon skeleton’s joints and our
skeleton’s joints and present our preliminary median
error result in Fig. 3 for the simplest T-pose sequence,
without undesired contacts, for which we obtain a me-
dian error of 0.149 ± 0.082 m. Note that because the
raw and uncorrected Vicon skeleton lies on the sur-
face of the body, our error includes a Vicon bias error
approximately equal to the half the width of each seg-
ment and corresponding to the distance between skin
and bone.

We now discuss the cumulative latencies displayed
at the top right corner of each major processing block
in Fig. 1. From RGB-D frames to posture esti-
mate, our multithreaded C++ implementation takes
570.40±121.68 ms but is able to do this at a frequency
of 8.37 ± 3.25 Hz on an AMD X4 640 3Ghz processor
that was released in 2010. Also, we are able to obtain
dense optical flow [18] frames at ∼15 Hz × 4 views
(60 Hz effective) with minimal border cropping thanks
to a modern Nvidia Titan Black GPU released in 2014.
Finally, note that the cumulative latency at the out-
put of human blob tracking and labelling is ∼276.80 ms
while it is ∼588.70 ms at the output of the labelling of
previous blob points. Since the optical flow frame is

obtained in intervals of ∼100.00 ms, consequently we
require 2-3 frames on average in the optical flow chain
in order to perform the MVS.
Compared to the naive GDG construction, the MVS

refined GDG has ∼24% fewer edges of which ∼3% were
deemed to be invalid due to self-contacts. Further-
more, the MVS was able to determine an unambigu-
ous label ∼61% of the time. In ∼13% of the time,
there was a tie. These promising results demonstrate
the validity of our approach and we hope to increase
the percentage of points labelled by incorporating ad-
ditional votes from other 2D (e.g. SIFT [19]) and 3D
(e.g. range flow [20], ICP [21]) algorithms to further
enhance the refined GDG construction.

4 Conclusion

We have presented a system to track and estimate
the 3D posture of multiple subjects using multiple
RGB-D cameras. To deal with the self contact prob-
lem, we proposed a novel multi-view voting scheme and
have used it to fuse optical flow measurements as proof
of concept. As such, we are able to obtain a refined
GDG that contains ∼3% fewer invalid edges for locat-
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Figure 4. Landmark detection and skeleton fitting
(green) compared to the Vicon skeleton (yellow)

ing geodesic extrema. The resulting system operates
over a volume of approximately 5m × 5m × 2m at a
rate of ∼8.3 Hz, accommodating several individuals at
a time. Although not as precise as a motion capture
system, we are encouraged by the results obtained thus
far. Current and future work will be aimed at refining
the system further, particularly with respect to accu-
racy of localization.
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