
Multi-organ Segmentation by Minimization of Higher-order
Energy for CT Boundary

Asuka Okagawa1,2, Yuji Oyamada1,2, Yoshihiko Mochizuki1,2, and Hiroshi Ishikawa1,2

1Department of Computer Science and Engineering, Waseda University
2JST CREST

Abstract

In medical image analysis, segmentation of medi-
cal images such as Computed Tomography (CT) volu-
metric images is necessary for further medical image
analysis and computer aided intervention. We propose
a method for medical image segmentation by higher-
order energy minimization. Specifically, we introduce a
higher-order term that describes the continuity around
the edge points of a CT image. The parameters of
the energy terms are determined according to various
conditional probabilities learned from sample data with
the ground truth. Then we minimize the energy using
graph cuts and evaluate the effectiveness of the intro-
duction of the term into the traditional energy.

1 Introduction

Image segmentation for a computed tomography
(CT) data is one of the major topics in medical im-
age analysis. CT data may be a two or three dimen-
sional image, or volume, of the radiodensity, known as
CT number, which differs for different objects in the
scanned body. This would be useful for diagnosis or
assist for surgical operation, and there is a great de-
mand to extract the region of objects automatically by
image processing such as segmentation.
Many methods for medical image segmentation have

been proposed [1]. To segment multiple organs of volu-
metric CT image simultaneously [2][3][4] is still a chal-
lenging task. One formulation of the problem is to ex-
press the segmentation as a labeling for each voxel and
to solve by energy minimization, which seeks the global
minimum of a energy function measuring the inaccu-
racy of estimates. A class of the minimization problem
can effectively solved by graph-cut based methods. Al-
though the order of energy function in the class, which
describes the degree of dependency among voxels, has
been limited to 1, this limitation has been overcome
in recent works [5, 6, 7] that convert a higher-order
energy to the second-order one. A higher-order en-
ergy enables us to express complex constraints among
multiple organs or widely spanning structure[8]. How-
ever, defining the effective energy applicable to specific
problems is still a challenging task.
In this paper, we analyze the relationship between

the probabilistic atlas, the ground truth of segmenta-
tion, and the distribution of CT values, then propose a
new energy function with higher-order terms describ-
ing a constraint on wider region. Specifically, we intro-
duce a higher-order term that describes the continuity
around the edge points of a CT image. We learn vari-
ous conditional probabilities to determine the parame-
ters of the energy terms, and then minimize the energy

using graph cuts. We then evaluate the effectiveness
of the introduction of the term into the traditional en-
ergy.

2 Medical Image Segmentation

Let V ⊂ Z
3 be a regular lattice of voxels, X : V → R

an 3D CT image, L = { 0, 1, . . . ,M } a set of labels,
each designating an organ, except that the label 0 des-
ignates the background. For input image X a labeling
L : V → L which assigns a label Lv ∈ L to each voxel
v ∈ V is called a segmentation of X.

2.1 Energy minimization

The problem to find the best segmentation L of an
image can be formulated as the minimization of the
energy function E(L) such as

E(L) =
∑
C∈C

fC(LC). (1)

Here, C is a set of cliques which are subsets of voxels in
V and fC a potential function defined over the voxels
in a clique C.
For segmentation of medical images the energy func-

tion is practically defined as follows.

E(L;X) = wAEA(L)

+ wDED(L;X)

+ wSES(L;X), (2)

where EA(L), ED(L;X), and ES(L;X) are an atlas,
data, and smoothness terms, respectively, and wA, wD,
and wS are weights corresponding to the three terms.

Atlas term Atlas term is a potential dependent to
the location of a voxel, which is defined by a probability
Pr(L) for each voxel. This is called probabilistic atlas
and can be constructed with a set of training data with
atlases labelled manually. Thus, this term is defined for
the cliques V as

EA(L) =
∑
v∈V

− ln Pr(Lv). (3)

Data term Data term determines which label
should be assigned according to the probability of oc-
currence of CT value for each label. The probability
can be inferred from the training dataset and the po-
tential function is defined as

ED(L;X) =
∑
v∈V

− ln Pr(Xv | Lv). (4)
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Smoothness term The region of an organ is
connected without fragmentation. Smoothness term
constrains two neighboring labels should be the same.
Thus the potential function is defined for the clique
N ⊂ V × V which consists all pairs of the neighboring
voxels as follows:

ES(L;X) =
∑

(u,v)∈N
hu,v(Lu, Lv, Xu, Xv), (5)

where h is Potts potential defined as

hu,v(Lu, Lv, Xu, Xv)

=

{
0 if Lu = Lv,

(|Xu −Xv|+ 1)
−1

otherwise.
(6)

The energy function for multiple labels can be mini-
mized approximately by using the fusion-move strategy
[9]. Fusion-move algorithm will generate the labeling
with lower energy than the current labeling by giving
a labeling called the proposal. In our problem, due
to connectivity of the region of organs, we can give a
uniform labeling, which assigns a certain label for all
voxels, as a proposal repeatedly for each label.

2.2 Higher-order Energy

For a clique C, |C|−1 is called the order of the clique
and the potential fC . The order of energy function is
the maximum order of the potentials in it. An energy
whose order is greater than 2 is called a higher-order
energy.
Higher-order potentials depend on more than 2 vox-

els. Such higher-order dependency should be useful to
describe constraints among some organs.
Until recently the order of energy which can be

solved by QPBO[10] is limited to 1. Some algorithms
to convert the function of any order to that of the first
order have been proposed [5, 7]. This enables us to use
any higher-order energy to describe more complicated
conditions.

3 Proposed method

Segmentation result of the energy function with
data, atlas and smoothness terms is sometimes inaccu-
rate. Figure 1 shows an result, in which some organs
are not properly segmented. In this example the left
part of the liver is incorrectly labelled as another organ
even though the CT values in the region of the liver are
roughly constant and there seems no apparent changes
in it. The atlas and data terms have just information
of a voxel of each position, the smoothness terms only
affect a pair of labels which are different each other.
In order to give a constraint around the edge points,
observation of more than 2 voxels is needed. This can
be achieved by incorporating a higher-order potential
into the energy function.
We can find the boundary of intensity in the CT im-

age shown in Fig. 1. The boundary can be detected as
a set of edge points whose gradient of the CT image
is larger than a threshold, which can be detected by
using some detection methods such as Canny edge de-
tector [11]. Figure 1 shows the edges detected by three
dimensional Canny detector in white, superimposed on

Figure 1. An example of poorly-segmented result
for the liver. Left: the input CT image. Center:
ground truth of segmentation. Right: segmen-
tation result using data, atlas and smoothness
terms. Lines in CT image and ground truth show
the edge of CT values. The label for the liver is
colored in pale orange.

the atlas. It can be seen that the organs are completely
bounded by the edges. This implies that the label of a
organ tends to be discontinued across the edge.
The discontinuity of labels across the edge should be

encouraged for segmentation. However, the smooth-
ness term does not work at the edge if the adjacent
labels are the same. To express this we should observe
along consecutive voxels if the labels exists uniformly
and are discontinued on the edge.
In this paper, we propose a higher-order potential

using the edge of intensity in the CT image. The po-
tential would be conditioned by the existence of edges
in the cliques, and depend on the some voxels to en-
sure the discontinuity around the edge. The proposed
higher-order term EH(L) is defined as follows. Let Cn
be the set of cliques for this potential, each of which
consists with n continuous voxels in a line. Let X̄
be the edge image of X, X̄(v) = 1 if v is on the edge
point, 0 otherwise. We define the function to predicate
if some edge points exist in a clique C as follows:

g(C; X̄) = 1−
∏
v∈C

X̄(v). (7)

Then we define the proposed term as

EH(L) =
∑
C∈Cn

fC(LC) (8)

where

fC(LC) =

{
0 if g(C) = 0 ∧ (∃l ∈ L′, ∀v ∈ C,Lv = l),

1 otherwise,
(9)

where L′ ⊂ L is a selected organs which this potential
affects.
Finally we define the energy function for segmenta-

tion as follows.

E(L;X) = wAEA(L)

+ wDED(L;X)

+ wSES(L;X)

+ wHEH(L), (10)

where wH is the weight for the higher-order term, if
wH = 0, the function is identical to the base energy
function Eq. (2).
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4 Experimental results

To evaluate the effect of the proposed higher-order
term we compared the segmentation results between
with and without the term. We use the dataset con-
taining 76 non-contrast CT images. All images are pre-
processed to reduce difference among individuals such
as the body frame or alignment of organs, by registra-
tion with scaling and translation into 209× 158× 258
voxels in size. Each image has an atlas for 21 organs
labelled manually. Due to the limited number of data,
we use the leave-one-out validation for training and
testing. The accuracy of segmentation results were
evaluated by Jaccard index for non-background labels.
In this experiment, we focused on improving of the

accuracy of the liver. We use the higher-order term
with setting L to the label of liver. The cliques used
for the higher-order term is designed as the consecutive
6 voxels in x-direction, which define the 5th order po-
tential. We placed the cliques in the limited region to
avoid the untoward effect for the other organs. The re-
gion is determined according to the probabilistic atlas
of liver.
The edge voxels for each image is detected by Canny

edge detector [11] extended to the 3D image. Fig-
ure 1 show the edge voxels superimposed on the input
CT image and the ground truth labeling. While the
weights for non-higher-order term were wA = wD = 1,
wS = 10, the weight for higher-order term is set to
different values.
Table 1 shows the mean of Jaccard index of the seg-

mentation results for wH = 0, and between 0.4 and 1.2.
The energy with wH = 0 is the base energy identical
to Eq. (2). There is no remarkable improvement rel-
ative to the base energy. Table 2 shows the statistics
for the worst 12 cases in terms of the Jaccard index
by the base energy. The accuracy for worse cases are
improved wholly.
Figure 2 show the results of three cases. From left

to right, input CT images, ground truth, segmenta-
tion result without higher-order term, and result with
higher-order term. The weights for the higher-order
term are wH = 1.5, 0.5, 0.5, respectively, which give
the best JI scores for the liver. Figure 3 shows the
results for different weights of the higher-order term.
The region of liver extends with increasing the weight.

5 Conclusion

In this paper, we propose a higher-order energy for
multi-organ segmentation that introduces a higher-
order term that describes the continuity around the
edge points of a CT image, we utilizing the bound-
ary information of CT values and its discontinuity. In
the experimental results, the accuracy is improved in
some cases. As a future work the problem of robustness
should be solved.
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Table 1. Mean Jaccard index for all cases. The energy with wH = 0 is corresponding to the base energy.

wH 0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
all 0.7532 0.7514 0.7515 0.7509 0.7497 0.7483 0.7474 0.7452 0.7438 0.7423
liver 0.7714 0.7653 0.7653 0.7634 0.7603 0.7563 0.7536 0.7484 0.7442 0.7397

Table 2. Mean Jaccard index for the worst 12 cases. The energy with wH = 0 is corresponding to the base
energy.

wH 0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
all 0.6677 0.6701 0.6709 0.6713 0.6721 0.6721 0.6732 0.6740 0.6732 0.6730
liver 0.6780 0.6836 0.6853 0.6863 0.6870 0.6851 0.6872 0.6858 0.6831 0.6814

CT image ground truth base energy higher-order energy

Figure 2. The best Segmentation results for three cases. The weights for the higher-order term are wH = 1.5,
0.5, 0.5, respectively. From left to right, input CT images, ground truth, segmentation result without higher-
order term, and result with higher-order term.

wH = 0 wH = 0.5 wH = 1.0 wH = 1.5 wH = 2.0

Figure 3. An example of segmentation results for different weight parameters.
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