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Abstract

High spatial resolution satellite imagery has become
an important source of information for geospatial ap-
plications. Automatic segmentation of high-resolution
satellite imagery is useful for obtaining more timely
and accurate information. In this paper we introduce
a new approach for automatic image segmentation into
different regions (corresponding to various features of
texture, intensity, and color) based on topological un-
supervised learning. Three types of methods were stud-
ied in this work: matrix factorization, self-organizing
maps and probabilistic models. The approaches were
applied on a real Very High Resolution (VHR) image of
the French city of Strasbourg. The obtained segmenta-
tion results were validated using internal and external
clustering validation indexes.

1 Introduction

Many real applications require Image Segmentation
methods to identify regions of interest or to annotate
the image. These methods can be categorized into
three types: region-based segmentation, edge-based
segmentation and data clustering [2]. Region-based
segmentation includes the seeded and unseeded region
growing algorithms (e.g. JSEG: J measure based SEG-
mentation), and the Fast Scanning algorithm. They
expand each region of the image, pixel by pixel, based
on their value so as to obtain a high positional rela-
tion between clusters. The edge-based segmentation
methods usually use edge detection (i.e. the water-
shed algorithm). Finally, data clustering is used to
group automatically similar pixels and/or regions of
the image.
In the exploratory data analysis of high dimensional

data, like Very High Resolution (VHR) satellite im-
ages, one of the main tasks is the formation of a sim-
plified, usually visual, overview of the dataset. This
can be achieved through simplified description or sum-
maries, which provide the possibility to discover most
relevant features or patterns. Clustering and projec-
tion are among the examples of useful methods to
achieve this task. Classical clustering algorithms pro-
duce groups of similar data (e.g. different area or
pixels of the image) according to a chosen criterion.
Projection methods, on the other hand, represent the

data in a lower dimensional space in such a way that
the clusters and the metric relations of the data items
are preserved as faithfully as possible. In this field,
most algorithms use similarity measures based on Eu-
clidean distance. However there are several types of
data where the use of this measure is not adequate as
in VHR images.
Topological learning is a recent direction in Machine

Learning which aims to develop methods grounded on
statistics to recover the topological invariants from the
observed data points. Most of the existed topologi-
cal learning approaches are based on graph theory or
graph-based clustering methods.
In this work, we present new clustering approaches

for VHR image segmentation based on two recently
proposed topological learning approaches: TPNMF
(Topographic Projective Matrix Factorization) [5] and
lwo-SOM (local weighting observation Self Organizing
Maps) [3]. Both are compared to GTM (Generative
Topographic Mappings) [4].
The rest of the paper is organized as follows: a quick

presentation of the three topological clustering models
(TPNMF, lwo-SOM and GTM) is given in Section 2
after a short introduction in Section 1. In Sections
3, we present the validation of the proposed approach
on the VHR satellite image of the city of Strasbourg
(France). Finally the paper ends with a conclusion and
some future works.

2 Topological Clustering

Topological learning is one of the most known tech-
nique to obtain a clustering and a visualization simul-
taneously. At the end of the topographic learning, the
data points will be regrouped in different clusters based
on their similarity. These clusters can be represented
is a concise way using their gravity center or differ-
ent statistical moments. This information is easier to
manipulate than the original data points.

2.1 The GTM model

GTM was proposed by Bishop et al. [4] as a proba-
bilistic counterpart to the Self-organizing maps (SOM)
[6]. GTM is defined as a mapping from a low dimen-
sional latent space onto the observed data space. The
mapping is carried through by a set of basis functions
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generating a constrained mixture density distribution.
It is defined as a generalized linear regression model:

y = y(z,W ) = WΦ(z) (1)

where y is a prototype vector in the D-dimensional
data space, Φ is a matrix consisting of M basis func-
tions (φ1(z), . . . , φM (z)), introducing the non-linearity,
W is a D × M matrix of adaptive weights wdm that
defines the mapping, and z is a point in latent space.
The standard definition of GTM considers spherically
symmetric Gaussians as basis functions, defined as:

φm(x) = exp

{
−‖x− μm‖2

2σ2

}
(2)

where μm represents the centers of the basis func-
tions and σ - their common width. Let D =
(x1, . . . , xN ) be the data set of N data points. A prob-
ability distribution of a data point xn ∈ �D is then de-
fined as an isotropic Gaussian noise distribution with
a single common inverse variance β:

p(xn|z,W, β) =

(
β

2π

)D/2

exp

{
−β

2
‖xn − y(z,W )‖2

}
(3)

The distribution in x-space, for a given value of W ,
is then obtained by integration over the z-distribution

p(x|W,β) =

∫
p(x|z,W, β)p(z)dz (4)

and this integral can be approximated defining p(z)
as a set of K equally weighted delta functions on a
regular grid,

p(z) =
1

K

K∑
i=1

δ(z − zk) (5)

So, equation (4) becomes

p(x|W,β) =
1

K

K∑
i=1

p(x|zi,W, β) (6)

For the data set D, we can determine the parameter
matrix W , and the inverse variance β, using maximum
likelihood. In practice it is convenient to maximize the
log likelihood, given by:

L(W,β) =

N∑
n=1

ln

{
1

K

K∑
i=1

p(xn|zi,W, β)

}
(7)

In this paper, we propose to use two topographic
learning methods to compare with the GTM algorithm.

2.2 TPNMF: Topographic projective NMF

The TPNMF [5] incorporates neighborhood connec-
tions between PNMF basis functions arranged on a 2D
topographic map, the objective to optimize becomes

||A−RHRTA||2, (8)

where A, R are a non-negative input matrix and a
non-negative coefficient matrix, respectively, as in the
original NMF. The new termH = (hrs) is aK×K non-
negative dimensional matrix that defines neighborhood
connections betweenK basis functions. ChoosingH as
the identity matrix reduces the TPNMF to the PNMF.
We arranged basis functions on a two-dimensional
square-lattice topographic map, and set neighborhood
connection weights to be normal distribution (Gaus-
sian) functions on the map. The model consists of a
discrete set C of cells called ”map”. This map has a dis-
crete topology defined by an undirected graph, which
usually is a regular grid in two dimensions. For each
pair of cells (r,s) on the map, the distance δ(r, s) is
defined as the length of the shortest chain linking cells
r and s on the grid. For each cell this distance defines
a neighbor cell; in order to control the neighborhood
area, we introduce a kernel positive function h (h ≥ 0
and lim

|y|→∞
h(y) = 0). We define the mutual influence

of two cells r and s by hr,s. In practice, as for tradi-
tional topological maps we use a smooth function to
control the size of the neighborhood as:

H = (hr,s) = exp(
−δ(r, s)

T
).

Using this kernel function, T becomes a parameter of
the model and as in the Kohonen [6] algorithm, we
decrease T from an initial value Tmax to a final value
Tmin. The minimization of (8) leads to the following
update rule

R ← R� 2AATRH

RHRTAATRH+AATRHRTRH
. (9)

Hereafter, the pseudo code of the proposed algo-
rithm.

Algorithm 1 TPNMF

Input: data A ∈ Rm×n and K ≤ min(m,n)
Output: R,H
Initialize: select random nonnegative R ∈ R

N×K
+

and H ∈ R
K×K
+ . Choose Tmax, Tmin and Niter.

repeat

H = (hr,s) = exp(
−δ(r, s)

T
) (10)

R ← R� 2AATRH

RHRTAATRH+AATRHRTRH
(11)

until stabilization of R (t ≤ Niter).
Classification-step: For i = 1, . . . , N each ai is
assigned to the kth cluster, according to:

k =k′ Rik′ , k′ = 1, . . . ,K

2.3 Local Weighting Observations : lwo-SOM

The method lwo-SOM proposed by [3] is an adapta-
tion of the classical SOM by adding a weighting param-
eter in the objective function which allows to weight
the features during the learning process and to obtain
better results.

544



Indeed, the proposed clustering algorithm and fea-
ture weighting aims to select the optimal prototypes,
observations and feature weights at the same time.
Each prototype wj = (w1

j , w
2
j , ..., w

m
j ) corresponding

to cell j is allowed to have its own set of local features

weights π
(o)
j = (π

(o)1
j , π

(o)2
j , ..., π

(o)m
j ) and its own set

of local distance weights π
(d)
j = (π

(d)1
j , π

(d)2
j , ..., π

(d)m
j )

respectively. We denote the set of weight vectors

(|Π| = |W |) by Π = {πj , πj ∈ �m}|Π|
j=1 for both

observation and distance weighting.

The lwo-SOM has the following objective function:

Rlwo(χ,W,Π) =

|E|∑
i=1

|W|∑
j=1

Kj,χ(xi)‖πjxi −wj‖2 (12)

where πj are the observations weights.
According to this function, the prototype’s vectors

are updated using the following expression:

wj(t+ 1) = wj(t) + ε(t)Kj,χ(xi) (πjxi −wj(t))

As in the traditional stochastic learning algorithm of
Kohonen, we denote by ε(t) the learning rate at time
t. The training is usually performed in two phases. In
the first phase, a large initial learning rate ε(0) and a
large neighborhood radius Tmax are used .
These two methods (TPNMF and lwo-SOM) were

already tested by the authors for differents types of
data and the experimental results shows that these
models outperforms classical clustering methods [5] [3].

3 Experimental results

In this section we present the results obtained using
the three topological learning methods on the Stras-
bourg images data (Figure 1).

Figure 1. A small part of the VHR Strasbourg
image

The image has first been preprocessed in order to
create a data set made of 187058 superpixels, each
of them described by 27 attributes either geometri-
cal or radiometrical [1]. These attributes include the
geographic position of the superpixel, the surface of
the area covered by the superpixel, the mean RBG

values, the contrast compared to neighbor pixels and
superpixels, the brightness, and the standard devia-
tions, among others. In order to validate our results,
we compared the obtained segmentations with maps
of the area made by expert geographers (cf. Figure
2(a)). These maps were produced by a hybrid method-
ology, which mixes data from topographic databases
for roads and buildings, supervised classification for
different types of water and vegetation, as well as fur-
ther manual refinement in order to reduce classifica-
tion errors. However, there is an unknown amount
of uncertainty associated to these maps and they are
not fully reliable to be used as ground truth as they
are. Indeed, topographic data are taken in situ and
do not align well with the image data, because of the
satellite capture angle, as well as further geometrical
corrections applied to the image. This problem is eas-
ily observable by a closer inspection of the maps (cf.
Figure 2(c)).

(a) Original ground truth. (b) Modified ground truth.

(c) Zoomed boundary represen-

tation of the original ground

truth maps.

(d) Zoomed boundary represen-

tation of the modified ground

truth.

Figure 2. Extract of the original and improved
ground-truth images

To validate the approaches, we used two types of val-
idations : visual validation and numerical validation.

Visual validation

To test the quality of the obtained segmentation, we
first performed a visual evaluation of the segmentation
results (Figures 3 and 4) on the VHR Strasbourg im-
age dataset. These figures represent a portion of the
automatic segmentation of the image by the TPNMF
and lwo-SOM models. It is easy to see that the water
cluster (the Rhine river), the roads and the vegetation
are clearly detected by both models. The oval build-
ing situated on the left of the image corresponds to
the European Parliament, and we can note that, for
this part of the image, the TPNMF model give better
results compared to lwo-SOM model.
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Figure 3. Image segmentation using lwo-SOM

Figure 4. Image segmentation using TPNMF

Table 1. Quality Index results
Method RI GCE VI DB
TPNMF 0.7793 0.7326 5.1868 31.745
lwo-SOM 0.7752 0.7293 5.1674 34.249
GTM 0.7712 0.7223 4.8618 36.017

Numerical Validation

The comparison is based on four quantitative per-
formance measures [7], [8]:
1. The Probabilistic Rand Index (PRI) counts the frac-
tion of pairs of superpixels whose labellings are con-
sistent between the computed segmentation and the
ground truth, averaging across multiple ground truth
segmentations to account for scale variation in human
perception.
2. The Variation of Information (VoI) metric defines
the distance between two segmentations as the aver-
age conditional entropy of one segmentation given the
other, and it measures the amount of randomness in
one segmentation which cannot be explained by the
other. It is used to compare the segmentation with the
ground truth.
3. The Global Consistency Error (GCE) measures the
extent to which one segmentation can be viewed as a
refinement of the other. Segmentations which are re-
lated in this way are considered to be consistent, since

they could represent the same natural image segmented
at different scales. This index is used to compare the
computed segmentation with the ground truth.
4. The DBnc is the average similarity between each
cluster ci, i = 1, ..., nc and the most similar other. We
seek clusterings that minimize the DB, and thus have
minimum possible similarity between the clusters.
As we can see in Table 1, the quality of the the seg-

mentation is good for this kind of image, which are
know to be difficult to segment accurately due to their
complexity. The obtained image segmentations are rel-
atively close to the ground truth for the three methods
(the RI indexes are above 0.77, a perfect agreement
would be 1) and the new approaches outperform the
GTM model for the four quality indexes.
We can note that the fusion of the three segmen-

tations gives a better result than lwo-SOM and GTM
alone (RI = 0.778), but does not outperform TPNMF.

4 Conclusions

In this paper, we proposed a framework for Very
High Resolution image segmentation, based on topo-
logical learning. The algorithms described in this pa-
per provide clustering of small regions from a VHR
satellite image and the experimental results have
shown promising performance. Several perspectives
can be considered for this work: currently, we are inves-
tigating a ”collaborative learning” approach between
the presented methods in order to increase the quality
of the final segmentation.
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