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Abstract 

Multilabel image annotation is one of the most im-
portant open problems in computer vision field. Unlike 
existing works that usually use conventional visual fea-
tures to annotate images, features based on deep 
learning have shown potential to achieve outstanding 
performance. In this work, we propose a multimodal 
deep learning framework, which aims to optimally inte-
grate multiple deep neural networks pretrained with 
convolutional neural networks. In particular, the pro-
posed framework explores a unified two-stage learning 
scheme that consists of (i) learning  to fune-tune the 
parameters of deep neural network with respect to each 
individual modality, and (ii) learning to find the optimal 
combination of diverse modalities simultaneously in a 
coherent process. Experiments conducted on the 
NUS-WIDE dataset evaluate the performance of the 
proposed framework for multilabel image annotation, in 
which the encouraging results validate the effectiveness 
of the proposed algorithms. 

1. Introduction 

Recent years have witnessed an explosive growth of 
digital images, and most of them are captured by 
hand-held mobile devices. There is an urgent need to 
developing effective techniques to annotate images with 
several labels according to the semantic contents, which 
can be deployed in many applications, such as personal 
image collection organize and large scale image re-
trieval. 

From a point of view of pattern recognition, the issue 
of image annotation can be considered as an issue of 
assigning a set of relevant tags to an image according to 
the contents, in which learning good features is a very 
important task and will significantly improve the overall 
system performance. Many efforts have been put forward 
to train hierarchical models which contain multiple lev-
els of feature extractors, such as Gabor-like edges, object 
contour, shape, and texture. Recently, deep neural net-
work (DNN), a typical hierarchical model, has received 
more and more attention again since Hinton et al. intro-
duce deep belief networks (DBNs) to efficiently train 
multi-layer to learn features from unlabeled data[1]. The 
variants of DBN have been successfully applied to a va-
riety of language and information retrieval applications 
[2-11]. By exploiting deep architectures, deep learning 
technologies can discover from training data the hidden 
structures and effective features to help improve per-
formance. [2] presents a convolutional DBN to achieve 
better performance in image classification and speaker 
identification tasks by unsupervised learning of hierar-
chical feature representation. [3] proposes an 

unsupervised framework to derive hierarchical image 
representations to deal with the image denoising or ob-
ject recognition tasks. [4] develops a generative deep 
learning model to achieve high-resolution images by 
merging a deep belief network with the gated Markov 
random field. [5] employs a bilinear deep belief network 
framework to deal with the image classification task by 
utilizing a bilinear discriminant strategy to simulatie the 
“initial guess” in human object recognition and effec-
tively avoid falling into a bad local optimum 
simultaneously. [6] explores multimodal deep neural 
network to learn representations in image annotation and 
image retrieval tasks by fusing multiple sources with 
shared hidden representation. [7] completes the task of 
speech recognition by a deep belief network. [8] deals 
with the problem of assigning labels to images based on 
a multi-task deep neural network architecture, and [9] 
performs image annotation by combining convolutional 
architectures with approximate top-k ranking objectives. 
[10] presents an unsupervised deep learning framework 
to derive spatio-temporal features for human-robot in-
teraction. [11] tackles the task of image super-resolution 
by learning a deep convolutional neural network. 

  Inspired by a variety of image annotation algo-
rithms based on the idea of deep neural networks, this 
paper proposes a novel framework of multimodal deep 
learning Specifically, the convolutional neural networks 
with unlabeled data is utilized to pre-train the multimo-
dal deep neural network to learn intermediate 
representations and provide a good initialization for the 
network; then, backpropagation is adopted to optimize 
the distance metric functions on each individual modal-
ity; finally, the exponentiated gradient online learning 
algorithm is applied to optimize the combinational 
weights of different modalities. 

2. Networks Architecture 

The overall architecture of the proposed convolutional 
neural networks model is shown in Figure 1. The net-
work contains eight layers with weights, where the first 
five are convolutional layers and the remaining three are 
densely connected layers. The outputs of the densely 
connected layer are fed into a 1000-way softmax classi-
fier which produces a distribution over 1000 labels. For 
both the pre-training and fine-tuning phases, a multino-
mial logistic regression objective function is used. 
Within the constructed convolutional neural networks, 
normalization layers are utilized in the first, second and 
last convolutional layers, and max-pooling layers are 
utilized in all the normalization layers to introduce in-
variance. Furthermore, rectified linear unit is utilized as 
the nonlinear activation function for every convolutional 
layer and every densely connected layer.  
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 Figure 1: The overall architecture of the convolutional neural networks model with 1000-way softmax layer. 
Before feeding the images to the convolutional layers, 

each image is resized to 256 256. Next, the first two 
convolutional filter sizes are set as 7 7 with a stride of 
2 pixels and 5 5 with a stride of 2 pixels respectively, 
and the filter number are set as 96 and 256 respectively. 
Such a size of filter is utilized to obtain the 
mid-frequency information as well as the extremely low 
and high frequencies, and smaller stride is utilized to 
avoid the “dead features” which is harmful to the next 
layers. Then, the last three convolutional layers are con-
nected to each another without any inter-value pooling or 
normalization layer. The last three convolutional filter 
sizes are all set as 3 3 with a stride of 1 pixel, and the 
filter number are set as 384,  384 and 256 respectively. 
Each densely connected layer has output sizes of 4096. 
Dropout in the first two densely connected layers is set 
as 0.6 during the pre-training phase.  

The networks architecture remains the same during 
the pre-training and fine-tuning phases. Only the last 
densely connected layer and the classifier will be 
changed when fine-tune the convolutional neural net-
work. Most features patterns of the training images can 
be obtained through the convolutional layers and pooling 
layers with respect to the training set, and the  densely 
connected layers combine these features together and 
feed them into a softmax classifier. At the fine-tuning 
phase, the detectors in the convolutional layers are 
fine-tuned to cover the varies of the new dataset work 
and well on the new dataset. 

3. Networks Learning 

3.1.   Multimodal 

To formulate the annotation learning task, the similarity 
function between any an image annotation  and an input 
image x is denoted as S(x, ). The learning goal is to learn 
a similarity function S(·,·) that can always produce the 
similarity values satisfying the following inequality: 

1,  > ,  S x S x 2
            (1) 

Where 1 and 2 are both annotations, and the location 
of 1 is on the top of the location of 2 in the ranking list 
with respect to the image content.  

The above discussion generally assumes similarity 
learning is performed on uni-modal data. This paper aims 
to generalize it for multi-modal data, where each image is 
represented by different kinds of low-level features in-
cluding color, shape, or texture, and the similarity an 

image annotation and an input image is computed by de-
fining different kinds of distance measures including 
linear similarity, cosine similarity, and Radial distance. 
Suppose nf kinds of feature descriptors and ns types of 
similarity measures construct N=nf×ns modalities, where 
each of which applies one kind of distance measure to 
compute the similarity between an image annotation and 
an input image with respect to one kind of feature.  

The proposed multimodal similarity learning scheme 
aims to deal with the following two issues: on the one 
hand, learning each optimal modality, namely learning 
each optimal similarity function S(·, ·) with respect to one 
specific low-level feature; on the other hand, identifying 
an optimal combination of these modalities to achieve the 
final optimal multimodal: 

1
,  = ,  

. . =1 and 0,1

N j j
j jj

j j

S x S x

s t
    (2) 

where j is the combination weight for the jth modality, 
and xj and j are the feature space within the jth modality. 

3.2.   Pre-Training 

  Unlabeled data are utilized to learn abstract and dis-
criminative intermediate representation for the objects in 
the images, and also provide a good initialization for the 
Network. Specifically, the input layer and the first convo-
lutional layer are combined to train the node weights W1 
with contrastive divergence. The conditional probability 
of the first convolutional layer nodes will be used as the 
input of the second convolutional layer: 

1= ,j jp x S W x      (3) 

where xj is the jth feature vector and  is the label informa-
tion. S(·) is the similarity function, such as: 
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Then, the first convolutional layer and the second con-
volutional layer are combined to combine train the node 
weights W2 in the similar way. This process is repeated for 
the remaining three convolutional layers and three densely 
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connected layers.  

3.3.   Fine-Tuning of Individual Modality 

At the phase of fine-tuning of individual modality, the 
node weights are optimized with labeled data by back-
propagating the derivatives of label assignment error. 
From the of point of view of pattern recognition, the 
multi-label learning can be considered as a multi-task 
learning problem. Therefore, the whole assignment error 
of the proposed convolutional neural networks can be 
defined as the summation of each label assignment error.  

Take the lth annotation assignment error as an example. 
The posterior probability of an image x with the jth feature 
xj and the lth annotation l, namely the probability an im-
age x with the jth feature xj owns the lth annotation l, can 
be expressed using the following equation: 

1

exp
=

j
l

jl L j
kk

p x
p

p x
           (5) 

where L is the number of annotations.  
Then, the KL-divergence between the predictions and 

the ground-truth probabilities is minimized. Suppose that 
there are multiple labels for each image, and that there is 
an annotation  vector y R1×c where yl=1 denotes the 
presence of the lth annotation and yl=0 denotes the absence 
of the lth annotation for an image, the ground-truth prob-
ability can be achieved by normalizing y as y/||y||1. If the 
ground truth probability for an image xi and annotation l is 
defined as qil, the cost function for the lth annotation as-
signment to be minimized is formulated as follows: 

1 1 1 1
= log 1 log 1

M L M L

l il il il
i l i l

ilJ q p q p (6) 

The whole assignment error over all the annotations 
errors can be achieved as follows: 

 
1

=
L

l
l

J J               (7) 

Finally, the derivatives of J over the third densely con-
nected parameters are computed and the back-propagation 
algorithm[12] is performed to update the parameters of 
other two densely connected network layers and five con-
volutional layers. 

3.4.   Fine-Tuning of Multi Modality 

For the proposed multi modality deep networks, an-
other key task is to learn the optimal combinational 
weights =( 1, 2, …, n, …, N), where n is set to be 
1/N at the beginning of the learning task. the Exponenti-
ated Gradient online learning algorithm[13] is here 
adopted to find the combinational weights sequentially. 
Specifically, the optimization problem is formulated as: 

1=argmint tKL ht
      (8) 

where KL() is KL-divergence and h( ) is a hinge loss: 

ln

max 0,  -

i
KL ii

i

T
t t

uD u v u
v

h S

       (9) 

and the formula of St is described as: 

1 1 ,  ,  ,  ...,  ,  ,   (10)
T

t N NS S x S x S x S x

where annotation + reveals the more content of image 
x in contrast to annotation -. 

The first-order Taylor expansion of ht( ) at t is per-
formed to simplify the optimization, and thus the 
optimization equation (8) is formulated as: 

1 = argmin  (11)t t t t t t tKL h h  

It can be seen from the above equation that the  will 
be updated whenever the current  fails to rank the order 
of + and - with respect to the input unlabeled image x 
correctly at a sufficiently large margin.  

The details of the proposed multimodal deep learning 
algorithm is summarized in algorithm 1. 

Algorithm 1: Multimodal Deep Learning Algorithm 
1: INPUT unlabelled data: U 
2: Initialize weights: 1,j=1/N, j = 1, 2, . . . , N 
3: Pretrain N eight-layer deep networks with unlabelled 

data for each feature space by utilizing as the convolutional 
neural networks shown in Figure 2 

4: for t=1, 2, . . ., M do 

          Receive: (xt, 
+, -) 

          for j =1, 2, . . . , N do 

               Update the deep network parameters W8 of 
last layer by utilizing the equation (8) 

               Adopt Backpropagation to finetune the 
parameters of other deep network layers 

         end for 

         Compute: St, j=Sj(xt, +)- Sj(xt, -), j = 1, 2, . . . , N 
         Compute: ht( t)=max(0, t

TSt)  
         if ht( t)>0 then 

( )
, 

1, ( )
, 1

= ,  =1, 2, ..., 
t t j

t t

h
t j

t j N h k
t kk

e
j N

e         end if 

end for 

4. Experiments 

In this section, an extensive set of experiments will be 
conducted to evaluate the efficacy of the proposed mul-
timodal deep learning algorithm for labelling image with 
multi annotations. Specifically, the dataset chosen to 
evaluate the proposed algorithm is first described; then, 
typical visual features for representing images and opti-
mal parameters for achieving good performance are 
investigate; finally, the comparison experiments are per-
formed between the proposed algorithm and other 
state-of-the-art algorithms. 

4.1.   Experimental Settings 

Three publicly available image datasets are adopted in 
our experiments, including natural scene image dataset[14],   
NUS-WIDE image dataset[15], and IAPRTC-12 image 
dataset[16].  

 

In the current implementation, the following global 
features are extracted as the visual descriptors: (1) 
128-dimension HSV color histogram and 225- imension 
LAB color moments, (2) 37-dimension edge direction 
histogram, (3) 36-dimension Pyramid Wavelet texture, (4) 
59-dimension local binary pattern feature descriptor, and 
(5) 960-dimension GIST feature descriptor, and the fol-
lowing local features are extracted as the visual 
descriptors: the dense sampling method and a Harris cor-
ner detector are first adopted as the patch-sampling 
methods; then, SIFT feature[17], CSIFT feature[18], and 
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RGBSIFT feature[18] are extracted to form a codebook of 
size 1000 using kmeans clustering; next, a two-level spa-
tial pyramid[19] is adopted to construct a 5000-dimensional 
vector for each image; finally, the TF-IDF weighing 
scheme is utilized to generate the final 
bag-of-visual-words. For all experiments, the feature vec-
tors are all normalized to the range of [0, 1]. 

For each query-annotation pair, three similarity meas-
ures are investigated as shown in equation (4), where the 
parameter  is chosen using the cross validation scheme. 
Specifically,  is set to be 0.18 for Cosine similarity 
measure,  is set to be 1 for Linear similarity measure, and 

 is set to be 2,  is set to be 0.18 for RBF similarity 
measure. Finally, there are a total of 36 modalities inves-
tigated to measure the similarity for image annotation. 

an experimental comparison is performed between 
three image classification methods: Lazy learning based 
approach (LL)[14], Deep representations and codes based 
approach (DRC)[20], the proposed approach. 

4.2.   Performance Comparison 

The results of comparative experiments using different 
methods for labeling images with milti-annotations are 
shown in Table 1, where the evaluation metric is the 
Hamming Loss . It can be seen from the results that the 
proposed deep structured semantic model considerably 
surpasses the other two approaches for all cases. That is, 
the proposed model is the best performer, beating other 
approaches by a statistically significant margin in Ham-
ming Loss and validating the efficacy of learning 
effective similarity functions on multi-modal data.  

Table 1: Comparative results. 

Method Natural 
scene NUS-WIDE IAPRTC-12

LL[14] 0.227 0.0364 0.0545 
DRC[20] 0.176 0.0321 0.0493 

Ours 0.134 0.0219 0.0291 

5. Conclusions 

In this paper, we propose a novel image annotation 
method which aims to optimally integrate multiple deep 
neural networks pretrained with convolutional neural 
networks. In particular, the proposed framework explores 
a unified two-stage learning scheme by (i) learning  to 
fune-tune the parameters of deep neural network with 
respect to each individual modality, and (ii) learning to 
find the optimal combination of diverse modalities si-
multaneously in a coherent process. Experiments 
conducted on a variety of public datasets demonstrate the 
most competitive performance of the proposed scheme 
compared with other exsiting state-of-the-art algorithms. 
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