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Abstract

This paper considers a novel application of x-ray
imaging of planks, for the purpose of detecting knots
in high quality furniture wood. X-ray imaging allows
the detection of knots invisible from the surface to con-
ventional cameras. Our approach is based on texture
analysis, or more specifically, discriminative dictio-
nary learning. Experiments show that the knot de-
tection and segmentation can be accurately performed
by our approach. This is a promising result and can
be directly applied in industrial processing of furniture
wood.

1 Introduction

Detecting knots in wood planks is a highly relevant
task in high-quality furniture production, where the
tolerance of knots in the finished product is very low.
Knots may divided into a multitude of categories, such
as splits, decay, wanes, sound and unsound, but in this
paper knot types are not differentiated. The detec-
tion is a difficult problem, since knots are non-uniform
structures composed of a pattern of bright and dark
intensities.
This paper proposes a pattern recognition method

for knot detection based on dictionary learning; a block
diagram of the method is given in Fig. 1. There are
various approaches for wood defect detection: optical
cameras, x-ray, microwaves and ultrasound. In the fol-
lowing, we focus on the x-ray modality for detection
and segmentation. In our set-up, x-ray was chosen as
imaging modality, since this allows detection of knots
at all depths.
Many strategies have been proposed for wood de-

fect detection solely from X-ray images. Funt et al. [1]
divided x-ray images into four categories with a thresh-
old determined by derivatives of intensity histograms.
Thereafter, the size and orientation of highest density
regions were determined and labeled knots. In [2], the
image was first filtered after which a wood-type specific
threshold was applied in five concentric surfaces in the

Figure 1: Block diagram of the proposed framework.
This paper considers the pattern recognition tasks en-
closed by the large rectangle.

log. The positions of the knots were predicted from
11 parameters. Thresholding is however problematic
when logs have a high moisture content since knots
have similar density to sapwood [3]. In [4], knots were
classified by thresholding in each CT slice, after which
the convex hull of each segmentation was computed.
The resulting contour was discretized by b-splines and
used as an input to a Kalman filtering model, which
produced a three-dimensional reconstruction of knots.
Rojas et al. [5] described the minimum distance (MDC)
and the Maximum Likelihood classifier (MLC). These
classifiers identify 5 categories (sapwood, heartwood,
rot, splits, knots and bark). Classification was per-
formed by nearest class mean distance and most prob-
able class, respectively. In [6], a neural classifier was
trained from image features consisting of intensity val-
ues, distance between the pixel of interest and the cen-
ter of the log, and seven textural features: homogene-
ity, contrast, dissimilarity, mean, SD, entropy and an-
gular second moment. In the experiments, black spruce
logs were classified into heartwood, sapwood, bark and
knots.

The validation measures typically used in defect de-
tection with the x-ray modality are producer’s accu-
racy (PA), overall accuracy (OA), detection rate (DR)
and false alarm rate (FA). Producer’s accuracy is de-
fined as the total number of correct pixels in the cate-
gory divided by the total number of ground truth pix-
els in that category. Overall accuracy is defined as
the total number of correctly classified pixels in all the
categories divided by the total number pixels. Detec-
tion rate is the rate of correctly identified knots in an
image. False alarm rate denotes the rate of incorrect
detections. Correctly identified implies that at least
one pixel of the knot is detected. A proper detection
rate should be paired up with accuracy for a useful re-
sult. Performance of the works above for x-ray knot
segmentation ranges between 76.4% to 97.6% in OA
[5], [6] and 97.2% to 100% in DR [2], [4].

All the current methods for knot detection rely on
pre-defined features; however, they often fail since
they are not effective enough due to the variability
of the knot appearance. To date, to the best of our
knowledge, non-parametric dictionary learning has not
yet been used in knot segmentation, though it has
been been widely applied for image representation with
state-of-art results in many problems including im-
age segmentation [7]. We hence approach wood de-
fect detection by sparse representation and dictionary
learning. In dictionary learning, the image patch ba-
sis is simultaneously learnt with their coefficients from
the training set. The basis captures the variation of
the dataset to the point that it is possible to recon-
struct the data using the basis patches. We propose
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a model in which discriminative feature maps are ob-
tained through discriminative dictionary learning [8],
and the maps are then classified to knot and normal
wood areas by a Gaussian mixture model (GMM).

2 Dictionary learning

Dictionary learning is a sparse modeling method
which allows the joint formation of the basis elements
together with their coefficients. The method is more
flexible than the application of predefined bases, such
as Fourier basis or wavelets [9], since there is no need
to require the basis elements to be orthogonal. Solv-
ing for the optimal sparse representation is an NP-
complete problem, to which approximation schemes
such as matching pursuit (MP) [10] and orthogonal
matching pursuit (OMP) [11] have been introduced.
The two main algorithms for dictionary learning are
K-SVD [12] and MOD [13], of which K-SVD performs
slightly better than MOD in the reconstructive setting
[7]. In contrast to optimal reconstruction, the D-KSVD
model [8] focuses on the discrimination of a particular
part of the signal.
In reconstructive dictionary learning the idea is to

minimize the reconstruction error of the sparse rep-
resentation of data. The reconstructive dictionary is
learnt by solving the problem

min
α,D

∑
l

||xl −Dαl||22 s.t. ||αl||0 ≤ L ∀l , (1)

where αl is a sparse representation of the data vector
xl, || · ||0 is the number of zero elements in the vec-
tor, and L is a sparsity factor. The l-th data vector is
denoted by xl ∈ R

n, corresponding to the l:th square
patch of size the c from an input image. The dictio-
nary D is composed of k atoms of the size n, i.e. ,
D ∈ R

n×k. A standard way of solving (1) is to up-
date α and D alternately. By OMP the optimal sparse
representation α� is obtained as

α�(x,D) ≡ argminα∈Rk R(x,D, α) , (2)

where R(x,D, α) ≡ ||x − Dα||2 is the reconstruction
error. A dictionary update algorithm, such as MOD
or K-SVD, is then employed, where the K-SVD algo-
rithm updates the non-zero coefficients of α� and D
concurrently.
In discriminative dictionary learning, the learnt

class dictionary is designed to reconstruct the un-
derlying class well and the other classes poorly. In
[8], N dictionaries were trained to discriminate N
classes of data. Soft-max discriminative cost functions
Cλ

i (y1, y2, ..., yN ) were used to maintain separation be-
tween the N dictionaries modelling N distinct classes
of objects. These are defined as Cλ

i (y1, y2, ..., yN ) ≡
log

∑N
j=1 e

−λ(yj−yi), which are close to zero when yi is
the smallest value among yj and gives asymptotic lin-
ear penalty λ(yi −minj yj), i = 1, ..., N . The soft-max
discriminative cost functions yields the discriminative
criterion

min
Dm

∑
i=1..N
l∈Si

Cλ
i

({R(xl, Dj , αlj)}Nj=1

)
+ γλR(xl, Di, αli) ,

(3)

whereDm ∈ {D1, ..., DN}, and Si is the classified input
data group i. Reconstruction and discrimination are
balanced by the two non-negative parameters λ and γ.

3 Gaussian mixture model fitting

Let I be an x-ray image from which T overlapping
patches of the size c × c are selected. The discrimi-
native feature map Idiscr is defined as the difference
of reconstruction errors for the knot and the regular
wood dictionary, or

I ldiscr = R(xl, α
�, Dknot)−R(xl, α

�, Dwood) , (4)

where xl is the vectorized patch l.
We define the cross-validation measure for the image

I as the discriminative difference

D(I) =
∑

l∈knot

I ldiscr −
∑

l/∈knot

I ldiscr . (5)

The rationale is the heuristics that the best discrimi-
native dictionary for knots should reconstruct the knot
region well but the regular wood area poorly; the oppo-
site should hold for the regular wood dictionary. The
optimal parameters values are those that minimise (5).
We model Idiscr as a 2-component Gaussian mixture

model, one component for the background wood and
the other knot. In addition, in the histograms of the
error images, the pixels with Idiscr > μwood of the pixel
distribution, should always be classified as background
wood, see Fig.2b. We hence model the posterior class
probability model for the pixel value z in Idiscr as

P (”x represents a knot”|z)

=

{
πG(z|μknot,σ

2
knot)

πG(z|μknot,σ2
knot)+(1−π)G(z|μwood,σ2

wood)
if z < μwood,

0 otherwise.

(6)

where G(z|μknot, σ
2
knot) is the Gaussian pdf conditioned

to the knot and π is the mixing coefficient. The pos-
terior probabilities provided by the GMM can be used
to classify discriminative maps into knots and normal
wood at the threshold 0.5 that yields the binary clas-
sification

C(x) =
{
1 if P (”x represents a knot”|z) > 0.5,

0 otherwise.
(7)

These binary, modified Gaussian mixture model
(MGMM) classifications are used as seeds to various
segmentation methods in Sec. 4.

4 Experiments

4.1 Data

We used oak plank data taken by a single source
x-ray scanning machine prototype, where the planks
typically were 3 cm thick. The data set consisted
of 72 manually annotated images taken from separate
planks with the x-ray source positioned in the 90 de-
gree angle of incidence to the plank. A Gaussian mask
with σ = 0.5 was applied to images as pre-processing.
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From the images, 20 were randomly selected for cross-
validation of model parameters, while the remaining
images were only used in testing. The annotation was
performed by a trained non-expert with conventional
image processing software. The manual segmentation
task was challenging as the existence of a knot could
not be verified by visual examination of the plank. For
cross-validation, we used 280×280 subimages of knots,
clipped from 13000× 2266 scans. For testing, we used
as large as 500× 500 images containing knots to guar-
antee that a large part of the image also represents
the background wood. This was done for the purpose
of evaluating the occurrence false-positives. The image
patches were individually normalised to zero mean and
unity variance before further processing.

4.2 Parameters

The parameters λ, γ and ε in (3) were determined
through 5-fold cross-validation over 20 wood sam-
ples. We cross-validated over the parameter ranges
λ ∈ [0.1, 0.5], γ ∈ [0.1, 0.5], and ε ∈ [0.01, 0.03], with
the corresponding step-sizes of 0.1, 0.1 and 0.01. The
remaining parameters were set as in [8]: dictionary size
to k = 128, sparsity factor to L = 4, and patch size
to c × c = 12 × 12. It would have been preferable
to cross-validate over all the parameters, but due to
the computational load, we focused on the three first
parameters of the discriminative model.

4.3 Evaluated segmentation methods

After the cross-validation, posterior knot probability
images were created from 52 test images. The posterior
maps were then segmented by 6 different graph-based
and active contour methods: min-cut graph cut (GC)
[14], normalized cuts (NC) [15], grow cut (GrC) [16]
and markov random field (MRF) model solved by ICM
[17], Hybrid MGMM graph cuts, local Chan-Vese algo-
rithm (CV) [18], and hybrid active contours algorithm
(HAC) [19].
MGMM classification, estimated by the EM algo-

rithm [20], was used as an initialisation for GC, GrC,
CV and HAC. In the case of CV and HAC, the convex
hull was computed for the points labeled as interior by
MGMM. In the case of GC, NC, and GrC, seeds were
sampled from the interior and exterior points. Addi-
tionally, for NC, the similarity weighting parameters
were set to σI = 0.1, σX = 150 and R = 50. Hybrid
GMM graph cuts, were set to use GMM probabilities
(weights) as seeds to the region term in graph cut seg-
mentation.
As evaluation measures, we used area based mea-

sures, Hausdorff distance and Jaccard Index, for
segmentation validation since the methods do not
necessarily produce single closed contours. The
measures are defined as follows. Let X and Y be
two sets of points. Hausdorff distance HD(X,Y ) =
max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y)},
where d(x, y) is the Euclidean distance between points
x and y. Jaccard Index JI(X,Y ) = |X ∩ Y |/|X ∪ Y |.
We also used Overall Accuracy, Detection rate and
False alarm rate, as described in Sec. 1.

(a) (b)

Figure 2: An example of poor performance. (a) X-ray
image, ground truth (white) and MGMM classification
(black); (b) the corresponding discriminative feature
map.

5 Results

Our knot segmentation results are displayed in Ta-
ble 1 and in Fig. 3. The cross-validation yielded the

estimates λ̂ = 0.4, γ̂ = 0.4 and ε̂ = 0.02. It can be
seen that MGMM classification had the best overall
performance, 91.7% OA and the lowest mean HD (9.8
pixels) from the ground truth, although several meth-
ods provide satisfactory performance. It also had a
high DR (96.9%). The relatively high FA (25.6%) and
low values of JI were partly due to the fact that the
annotations were approximate, since the boundaries of
knots were often unclear. The DR and FA results of
MRF and Grow cut were due to oversegmentation, as
indicated by HD and JI. In a few cases, 4 of 52, the
dictionary was not sufficient to capture the knots, see
Fig. 2a. This could have been resolved by increasing
the number of training examples.

6 Conclusions and future work

We have proposed a method for detecting knots
in wood planks from x-ray images while an auto-
matic defect detection and wood processing have a
high cost-saving potential due to reduction in waste.
The method is based on discriminative dictionaries,
where the discriminative feature maps are classified to
knot and normal wood areas by a Gaussian Mixture

Table 1: Segmentation results. HD = Hausdorff dis-
tance (mean ± Standard Error of mean (SEM) pixels),
JI = Jaccard Index (mean ± SEM), OA=Overall Accu-
racy (%), DR = Detection rate (%), FA = False Alarm
rate (%).

��������Method
Measure

HD JI OA DR FA

MGMM (proposed
9.8 ± 0.3 0.45 ± 0.03 91.7 96.9 25.6

method)
Hybrid GMM

10.3 ± 0.4 0.43 ± 0.03 89.9 96.9 26.7
Graph Cut
Graph Cut [14] 12.1 ± 0.5 0.35 ± 0.03 79.5 98.4 33.3
Normalized

10.5 ± 0.4 0.42 ± 0.03 90.3 96.9 33.3
Cuts [15]
Grow Cut [16] 11.2 ± 0.5 0.37 ± 0.03 83.6 98.4 0
MRF [17] 17.3 ± 0.4 0.14 ± 0.02 34.6 100 48.4
Hybrid Active

9.9 ± 0.4 0.44 ± 0.03 90.7 95.3 15.3
Contours [19]
Chan-Vese [18] 9.9 ± 0.4 0.43 ± 0.03 89.7 100 3
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Figure 3: (row 1 and 3) 500 × 500 X-ray subimages of wood, overlaid with manual knot segmentations (white)
and MGMM classifications (black). (row 2 and 4) Discriminative feature maps Idiscr corresponding to the X-ray
subimages.

Model. In our experiments, knots were detected at
the mean Hausdorff distance of 9.8 pixels. The results
are promising and demonstrate the viability of the ap-
proach in the industrial processing of furniture wood.
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