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Abstract

In this paper, we propose a novel feature extraction
scheme for fingertip writing recognition in the air for
egocentric viewpoint. The inherent challenges in the
egocentric vision e.g. rapid camera motion and object’s
appearance and disappearance in scene may cause the
fingertip to be detected in non-uniformly time sepa-
rated frames. Most existing approaches do not consider
this missing temporal information for feature extrac-
tion, which could be utilized to improve performance in
ego-vision tasks. The novel feature extraction scheme
extracts spatio-temporal features from trajectory of hand
movement which are used with Hidden Markov Models
for classification. The proposed feature set outperforms
current trajectory based feature schemes and achieves
96.7% recognition rate on a novel fingertip trajectory
dataset.

1 Introduction

The Egocentric vision (first person view) from wear-
able camera devices has constraints different from tra-
ditional vision tasks e.g. rapid camera motion, drastic
changes in illumination, object’s appearance and disap-
pearance in scene which makes it more challenging and
difficult for recognition tasks. At the same time, more
frequent presence of hands [1, 2, 3] in the observation
scene can be utilized for first person activity recognition
[4, 5, 6] and hand-eye coordination [7].

Exploring new paths in terms of communicating with
these wearable cameras is an interesting problem as
they lack keyboard or other input devices. Writing
alphabet characters using the fingertip can be one in-
teresting way of text input. Capturing the movement
described by fingertips in the air leads to the study
of spatio-temporal trajectories. This trajectory repre-
sentation of sequential data captures the perception of
motion and orientation and thus it is extensively used
as distinguishable feature representation not only for
hand gesture recognition [8, 9], but also for handwrit-
ing recognition, signature verification [10] and action
representation techniques.

The state of the art location, velocity and orientation
features [8, 9, 11] are found to be the most promising fea-
tures representing the trajectories and are widely used
in hand gesture trajectory recognition problems. These
trajectory feature extraction schemes are presented for
third person view and consider only the trajectory data
coordinates (x-y coordinates), assuming uniform time
sampling. But, inherent challenges in the egocentric vi-
sion cause the fingertip to be detected in non-uniformly

time separated frames. Thus, the resulting trajectory
does not contain uniformly sampled trajectory data.
These approaches do not consider this missing temporal
information for feature extraction and a comparison
of feature extraction schemes in [12] shows that trajec-
tory based representation gives erroneous recognition
results when hands are occluded during the tracking
which results in a trajectory with missing information
(data points). This occlusion also tends to occur in
egocentric view and thus underlines the requirement of
a new feature representation.

In this paper, we propose a new trajectory feature
extraction scheme which incorporates temporal informa-
tion during the feature extraction phase and extracted
features will be used in proposed gesture recognition
system. Section 2 describes the gesture recognition
system along-with proposed feature extraction scheme.
Performance evaluation of proposed system has been
discussed in section 3. In the end this paper is con-
cluded in section 4.

2 Gesture Recognition System

The complete gesture recognition system comprises
of three stages as shown in figure 1.
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Figure 1. Proposed fingertip writing recognition
system

The first stage in figure 1 consists of hand detection,
fingertip detection and tracking using a depth sensor.
Hand segmentation is performed with depth thresh-
olding. For fingertip detection and tracking, contour
curvature based approach [13] or distance metric ap-
proach [14] can be used which utilize the geometrical
properties of hand for fingertip localization. So, spatio-
temporal trajectories have been acquired by tracking
fingertip over time. For comparison purpose of proposed
feature set with other feature representations this part
will be same and these spatio-temporal trajectories will
be used for extracting features.
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2.1 Proposed Spatio-temporal Feature Set

Now, we present a novel spatio-temporal trajectory
feature extraction scheme that uses trajectory data
coordinate information and temporal information. The
hand gesture trajectory is determined by connecting the
fingertip points detected in a video. Fingertip points
usually have abrupt shifts in location due to shaking of
hand in movement and cluttered background. In order
to overcome these abrupt changes, mean of a fingertip
point is computed with respect to its neighbouring
trajectory points. The resulting smoothed trajectory is
represented by

Lt = (xt, yt, τt), (t = 1, 2, ..., T ) (1)

Here, ‘t’ represents the time frame instant and ‘τt’ rep-
resents the actual time information and ‘T’ completion
time frame of a particular gesture.

2.1.1 Feature Extraction

The proposed feature representation includes the 2-d
trajectory shape information (e.g. feature 5) similar to
[8, 9, 11] and augments it by including features with
temporal information efficiently in a novel way. This
feature extraction process considers three consecutive
points (pt, pt+1, pt+2) on the spatio-temporal trajec-
tory at a particular time instant ‘t’ to compute spatio-
temporal (ST) features and space-only features. These
three consecutive points on the ST-trajectory path are
used to construct a plane P. Features calculated by
surface normal vectors to the points in 3-dimensions
(3-d) have been shown to efficiently capture the local
geometrical shape of 3-d objects such as feature set in
point feature histogram for 3-d objects [15]. The pro-
posed ST-features (features 1-4) are calculated by using
normal to the plane P which efficiently captures the
spatio-temporal characteristics of trajectory data. The
extracted feature set is represented in the following.

1. Plane to ST-Trajectory Centroid Distance
(DPC): Initially vectors ‘u’ and ‘v’ are calculated
form point pt+1 to pt and pt+2 respectively. Then,
the normal vector ‘n’ to the plane is given by

n = u× v (2)

Now consider that cst =
(
Mx,My,Mτ

)
=

1
T

(∑T
t=1 xt,

∑T
t=1 yt,

∑T
t=1 τt

)
denotes the spatio-

temporal centroid of the trajectory. So, the dis-
tance of spatio-temporal centroid of the trajectory
from the plane can be calculated as

DPC = w · n

||n|| (3)

where, w =
−−−−−−−−−−−−−−−−−−−−−−−→
(xt+1, yt+1, τt+1), (Mx,My,Mτ ). The

calculated distance DPC has been shown in figure
2.

2. Plane to Initial point of ST-trajectory Dis-
tance (DPS): Second feature to be calculated is
the distance DPS of plane P from the initial point
of the trajectory ‘p1’ as shown in figure 2. Here,
p1 = IST = (Ix, Iy, Iτ ) = (x1, y1, τ1).

Figure 2. Computation of spatio-temporal features
DPC, DPS, αPC, αPS

DPS = s · n

||n|| (4)

here, s =
−−−−−−−−−−−−−−−−−−−−−→
(xt+1, yt+1, τt+1), (Ix, Iy, Iτ ).

3. Angle of Centroid of ST-Trajectory from
Plane Normal (αPC): The third feature to
be calculated is the angle of centroid point ‘cst’
from the normal vector n to the plane P. This
angle is shown in figure 2 and calculated using

αPC = arccos

(
n ·w

||n|| ||w||
)

(5)

4. Angle of Initial Point of ST-Trajectory from
Plane Normal (αPS): This feature is the angle
between the normal vector ‘n’ to plane P and the
initial point of the trajectory ‘p1 = IST ’ (in figure
2), computed using

αPS = arccos

(
n · s

||n|| ||s||
)

(6)

5. Spatial Tangent Angle (θtan): The spatial
tangent angle θtan is the highly discriminative 2-
d trajectory shape capturing feature, calculated
between points pt and pt+2 in the current window
of selected three points on the trajectory. The
spatial tangent angle (θtan) is shown in figure 3.

θtan = arctan

(
yt+2 − yt
xt+2 − xt

)
(7)

6. Spatial Centroid Angle (θC): The spatial
centroid angle (shown in figure 3) is the angle in 2-
d plane between points cst, pt and pt+2, calculated
using vectors ‘a’ and ‘b’,

a =
−−−−−−−−−−−−−−→
(xt, yt), (xt+2, yt+2)

b =
−−−−−−−−−−−−→
(xt, yt), (Mx,My)

θC = arccos

(
a · b

||a|| ||b||
)

(8)
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Figure 3. Space-only features θtan, θC, AC

7. Centroid Triangle Area (AC): The last spa-
tial feature calculated is the area of the triangle
formed by points pt, pt+2 and centroid cst in 2-d
trajectory path as shown in figure 3, which can be
calculates as follows,

AC =
1

2
· abs

(∣∣∣∣∣
xt yt 1

xt+2 yt+2 1
Mx My 1

∣∣∣∣∣
)

(9)

For a given character trajectory, each feature vector
among features 1-7 is normalized to have values in range
[0, 1] and then different weights are assigned to differ-
ent features. Features 1-2 and 5-6 are experimentally
proved to be more discriminative than other features
and assigned a weight of 1.5 while features 3-4 and 7 are
assigned a weight of 0.5 to give maximum recognition
accuracy. The combined feature space representation
of trajectory is given by,

Fcombinedt = [DPCt , DPSt , αPCt , αPSt , θtant , θCt , ACt ],

1 ≤ t ≤ T − 2 (10)

2.1.2 Gesture Classification

In the third stage, The sequential data features ex-
tracted from hand movement trajectory are used for
classification among different gesture classes. Hidden
Markov Models (HMM) [9, 11] are generative models
widely used for sequential data modelling. In this work,
we have implemented a HMM system with continuous
observation model for classification instead of HMM
with discrete observation symbols. The reason for con-
tinuous observation model lies in the fact that critical
multidimensional feature space information may be lost
by vector quantization. So, HMM based classification
system is implemented for performance evaluation of
proposed trajectory feature set. For comparison, we
have also tested our approach with a discriminative
classifier, Random Forest using majority-vote rule [16].

3 Experimental Results

3.1 Dataset

The fingertip writing trajectory dataset is generated
from head-mounted depth camera sensor (Creative*

Interactive Gesture Camera) to record gestures in ego-
centric view. The dataset consists of total 260 character
trajectories recorded and manually segmented from the
same person, representing the 26 English alphabets
(from a to z), i.e. 10 character trajectory examples for
each alphabet character.

The feature vectors will be extracted from these
character trajectories and will be different in size for
multiple realizations of a particular gesture depending
upon the variations in velocity of hand motion as well
as shape and complexity of gesture. A data aligning
algorithm presented in [11] is used to make feature
vectors of a particular gesture of equal length.

3.2 Recognition System

For classification, a continuous HMMmodel is trained
for every class. Output probabilities are modelled with
Gaussian Mixture Models (GMM) and the training
is performed using Baum-Welch (BW) algorithm [17].
The number of mixtures of Gaussian and the number of
states are adjusted experimentally to 3 and between 4
and 8 respectively. 10-fold cross validation scheme has
been used for performance estimation. The recognition
ratio [9], for gestures of all classes can be defined as

R =
Number of correctly recognized gestures

Total number of test gestures
× 100

(11)

For recognition rate comparison, state of the art
location, angle and velocity features [8] and a trajectory
based writing verification feature extraction scheme
[10] have been used with the same generated character
trajectory dataset and the result is shown in table 1 for
HMM based classification system and a discriminative
Random Forest based approach. From results, it
is clear that proposed feature set gives the highest
recognition rate when it is used with HMM based
classifier. The recognition rate of proposed feature set
with Random Forest based classification is slightly
lower. This is due to high temporal variation in same
gesture class induced by temporal information in
proposed feature set which results in lower recognition
rate when used with Random Forest based approach.
Also, HMM captures the sequential behaviour of the
data better than Random Forest based classifier.

Table 1. Percentage recognition rate of gesture
classification system

Feature Set HMM Random Forest

Location, angle and velocity [8] 94.6% 79.61%

Function based feature vectors [10] 85.8% 78.46%

Proposed Spatio-temporal feature set 96.7% 81.15%

In table 2, we present the recognition rate of
individual features showing that our proposed combi-
nation of individual features leads to a significantly
higher recognition accuracy. Weights of the proposed
features have been adjusted experimentally so that the
combined feature set gives the maximum recognition
rate with classification systems.
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Table 2. Percentage recognition rate of proposed
individual features with HMM based system

Feature Recognition Rate Feature Recognition Rate

DPC 31.92% DPS 27.30%

αPC 13.07% αPS 12.69%

θtan 64.23% θC 41.53%

AC 25.00%

3.3 Gesture Recognition in Noisy Environment

In this section, performance of proposed feature set
has been evaluated in noisy environment due to inherent
challenges in egocentric viewpoint and two analysed
scenarios have been presented in the following,

• Case-I: Random Sample Loss of Fingertip
Trajectory Data: It is considered in the first
case that fingertip is not detected multiple times in
random frames during the fingertip writing process
and the resulting trajectory of the data for 40%
random sample loss is shown in figure 4(b).

• Case-II: Random Sequence of Samples Loss
for Fingertip Trajectory Data: This case oc-
curs due to occlusion in egocentric view which
occurs when some object suddenly appears in the
scene and occludes the fingertip in the scene for
some duration randomly during gesture movement
and resulting character trajectory after 12% se-
quential sample loss is shown in figure 4(c).

(a) Trajectory of character ‘a’ with-
out any loss.

(b) Case-I, trajectory of character
‘a’ with 40% random sample loss.

(c) Case-II, trajectory of character
‘a’ with 12% sequential sample loss.

Figure 4. Character ‘a’ trajectories in noisy envi-
ronment

The recognition result for both cases is shown in
figures 5 and 6 for all trajectory data examples. The
analysis of above two scenarios shows the robustness of
proposed Spatio-temporal features in noisy egocentric
view. It outperforms state of the art trajectory feature
representation in noisy egocentric scene and maintains
a high recognition rate ≈ 90% even for 40% random
sample loss (case-I) and 15% sequence of sample loss
(case-II). This is due to spatio-temporal information
(features 1-4) in the proposed complete feature set (fea-
tures 1-7) that not only preserves the trajectory’s 2-d
shape (features 5-7), but in case of high sample loss

of trajectory data, it also discriminates it from other
gesture classes by matching the temporal variation in
the shape.
From figures 5 and 6, Recognition rate comparison

of proposed 2-d space-only features (features 5-7) and
complete set of proposed features (features 1-7) proves
that by combining the spatio-temporal features (DPC ,
DPS , αPC , αPS), the complete proposed feature rep-
resentation also includes the temporal information of
trajectory samples obtained, which makes the feature
representation resilient to high sample loss of trajectory
data.

Figure 5. Character recognition rate comparison
in noisy environment: case I

Figure 6. Character recognition rate comparison
in noisy environment: case II

4 Conclusion

In this paper, a novel trajectory feature extraction
scheme has been proposed which takes into account
exact time information associated with 2-d trajectory
data. The HMM based system implemented with the
proposed feature set outperforms the recognition rate
of state of the art trajectory feature sets. Finally, ges-
ture recognition problem with sample loss of trajectory
data (due to inherent challenges in egocentric view) is
considered and two cases have been analysed for per-
formance estimation of proposed feature set in noisy
egocentric scene. The proposed feature set shows ro-
bustness in high noise environment and maintains a
very high recognition rate as compared to state of the
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art features. As a future work, we plan to extend our
proposed approach to on-line egocentric handwriting
detection and recognition to be able to recognize hand-
writing “on the fly”.
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