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Abstract

This paper describes an experimental comparison of
two measures of the complexity of binary patterns with
respect to how well they predict human judgement of vi-
sual complexity. The experiments are performed with
a data set consisting of 45 binary patterns defined on a
square 6 X6 array of black and white squares. The mea-
sures compared are generalizations of the measures pre-
viously explored for one-dimensional binary sequences
by Alexander and Carey as well as Papentin. The for-
mer is based on counting the number of sub-symmetries
present in the pattern, and the latter is an upper bound
on the Kolmogorov complexity. This upper bound is ob-
tained by calculating the shortest length of all possible
descriptions of the pattern among a hierarchy of de-
scription languages.

1 Introduction

The complexity of a pattern is one of its most salient
structural characteristic features, and it is thus no sur-
prise that complexity measures find a wide variety of
practical applications to diverse areas such as letter
identification [14], handwriting recognition [15], infor-
mation retrieval [17], data compression [9], computa-
tional music [18], and psychology [2], [4]. An extensive
review of measures of visual complexity is found in ref-
erence [5]. One property of patterns that forms an
integral part of several measures of pattern complexity
is mirror symmetry [8]. A very simple and largely for-
gotten measure of complexity of one-dimensional visual
sequences is the measure of Alexander and Carey which
counts the total number of sub-symmetries present in
the sequence [2]. Patterns with mirror symmetry are
generally deemed simpler than patterns that do not
contain such symmetries. Another popular approach
to measure the complexity of binary sequences is based
on lossless compression of the sequence. The complex-
ity of the sequence is then measured by the length of
the compressed version. This approach is most no-
tably exemplified by the Kolmogorov complexity [7],
[9]. In practice however, the Kolmogorov complexity
is not computable, and hence it must be approximated
in some way, usually by computing an upper bound
instead. An attractive and practical approach to com-
puting an upper bound on the Kolmogorov complexity,
via a hierarchy of description languages, was proposed
by Papentin [12], [13].
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In this paper the measures of complexity of Pa-
pentin and Alexander-Carey, originally proposed for
one-dimensional binary sequences, are compared with
each other and with human judgments of complex-
ity, using a dataset of two-dimensional visual patterns.
This dataset consists of 45 patterns defined on a 6 x 6
square array of black and white squares.

2 Pattern Sub-Symmetries

2.1 One-dimensional pattern sub-symmetries

In 1968 Christopher Alexander and Susan Carey
proposed an amazingly simple empirical measure of the
complexity of visual one-dimensional binary patterns
that consist of a concatenation of squares colored either
black or white [2]. What is more noteworthy is that in
the experiments performed with human subjects they
found that the measure correlated highly with human
judgments of cognitive complexity (0.808, significant
at the 0.00001 level). The measure is quite simple: it
just counts the total number of sub-symmetries present
in the pattern. A sub-symmetry is a contiguous sub-
set of adjacent squares that possesses mirror symme-
try. In the computer science theory of words, the same
notion is called a palindrome, and the total number
of palindromes contained in a sequence is called the
palindrome complexity [1]. The example in Figure 1
comparing two sequences of seven squares each, illus-
trates the procedure. The sequence on the left has four
sub-symmetries of length 2, and one each of lengths 3,
5, and 7, for a total of 7. The sequence on the right
has one sub-symmetry of length 2, three of length 3,
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Figure 1. Calculation of sub-symmetries.



and one of length 1, for a total of 5. A pattern with a
relatively greater number of sub-symmetries is consid-
ered simpler than one with fewer sub-symmetries, and
thus the pattern on the right is deemed more complex
than the one on the left.

The utter simplicity of this measure, its inherent
natural coding of nested hierarchical symmetries con-
tained in a pattern, and its high correlation with hu-
man judgments in the visual domain, motivated its ex-
ploration in the auditory world of musical rhythms. It
was found that if musical rhythms are notated in box-
notation, the measure then also correlates highly with
various empirical tests of rhythm performance and cog-
nition obtained by means of listening and reproduction
experiments with human subjects [18].

2.2 Two-dimensional pattern sub-symmetries

Inspired by the work of Alexander and Carey, Su-
san Chipman explored several measures of complexity
of two-dimensional binary patterns [4]. The measure
that correlated most highly with human judgments of
complexity (correlation = 0.72) generalizes the one-
dimensional Alexander-Carey measure to two dimen-
sions by applying it successively to each of the rows
and columns of the pattern, with the goal of measur-
ing the overall vertical and horizontal sub-symmetries.
They modified the original measure of complexity pro-
posed by Alexander and Carey by defining it as the
weighted linear combination of all the symmetric sub-
sequences found, where each is weighted by its length
(the number of elements or squares). This weight-
ing scheme is equivalent to counting all the squares
that make up all the sub-symmetries found. For the
two one-dimensional patterns of Figure 1, the weighted
measures yield the values 23 and 15 for the patterns
on the left and right, respectively. Presumably this
weighting scheme was used based on the assumption
that the presence of relatively large symmetric sub-
sets of a pattern are more indicative of overall simplic-
ity than relatively small subsets. On the other hand,
this weighting scheme emphasizes the presence of ex-
act global symmetries and downplays the hierarchical
role of small and medium sized sub-symmetries (local
symmetries). Hierarchy is a psychologically relevant
notion [6], and furthermore, exact symmetries in the
real world are hard to find, thus highlighting the im-
portance of hierarchical symmetry measures that are
sensitive to approximate symmetries [20]. One goal of
the present study is to determine whether the weight-
ing scheme adopted by Chipman offers any advantages
over treating sub-symmetries equally at all hierarchical
levels.

3 Papentin Complexity
3.1 One-dimensional Papentin complexity

A completely different approach to measuring the
complexity of one-dimensional patterns is via the
length of the shortest possible algorithm or computer
program that will generate the pattern. This mea-
sure is referred to most frequently as the Kolmogorov
complexity, and was proposed independently in differ-
ent guises by Solomonoff [16], Chaitin [3], and Kol-
mogorov [7]. Although this idea is powerful and fruit-
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ful in theory, it is not computable, and therefore not
practical [9]. Nevertheless, viable methods exist for
approximating the Kolmogorov complexity via upper
bounds. Frank Papentin proposed one such measure
defined as the shortest length of all possible descrip-
tions in a hierarchy of description languages [12], [13].
Let X = (x1,z2, ..., x,) denote a sequence of n binary-
valued symbols. At the first and lowest hierarchical
level, the Papentin complexity denoted by L is de-
fined as the length (number of symbols) of the se-
quence. Thus Lo(X) = n. Intuitively, as a crude first
approximation, it is reasonable to suppose that a long
sequence should be more complex than a short one.
However, this is not necessarily so. A sequence such as
abbabaaababbbb is much shorter than ab repeated one
thousand times, but the latter is simpler and easier to
describe than the former. At the second level in the
hierarchy, the complexity, denoted by L1, is defined as
the length of the description of the sequence in terms
of the number and size (length) of the runs of iden-
tical symbols in the sequence. Consider the sequence
X = aaabaabaadb. Repetitions of the same symbol are
described by an exponent, so that X = a3ba?ba?b. Fur-
thermore, let n,. denote the number of runs in the se-
quence, m; the number of times a symbol is repeated in
the ith run, and k the number of runs of length greater
than one. For X = aaabaabaab we have that n, = 6,
mq = 3, mg = 2, and mg = 2. Then the complexity at
this hierarchical level is given by the equation:

k
Li(n) =n,+ Y _logm; (1)
1=1

Substituting for the values of n,, k, and m; of the
sequence X yields:

Li(n) =6+log3 +2log2 = 7.079 (2)

At the third hierarchical level of description lan-
guages, subsequences that repeat in the sequence may
be replaced by the symbol S;, but this symbol must
become part of the new description, by appending
it and separating it by a comma in the descrip-
tion itself. As an example, consider the sequence
Y = ababbbbbabababababbbba, in which the subse-
quence ababbbb occurs twice, and the subsequence ba
occurs three times. If we replace ababbbb by Sy, and ba
by Ss, we obtain the sequence:

SlsgSgSgbsla, ababbbb, ba (3)

which may be shortened further using the same rules
used in the second hierarchy to:

S183bS,a, abab*, ba (4)

which yields the value:

Lo(n) =13 +1og 3 + logd = 14.72 (5)
It should be pointed out that the above definitions of
S1 and S, represent only two choices among the many
other alternatives available, and all such possibilities
may need to be examined in order to be sure that the
shortest description is found.

Papentin’s fourth hierarchical level L3(n) incorpo-
rates two transformations of subsequences: mirror



symmetry and complementation. The sequence
aaabaabaabbaabaabaaa contains the subsequence
aaabaabaab followed by its inversion baabaabaaa.
It therefore has mirror symmetry, and is therefore
a palindromic subsequence. This transformation
is denoted by the symbol <. In the complemen-
tation operation the symbol a is exchanged with
symbol b and vice versa. For instance, the sequence
aaabaabaabbbbabbabba contains aaabaabaab followed
by its complement bbbabbabba. This transformation
is denoted by the symbol f. Thus, the sequence
abbbabbaababbaabbabbbabaaabaabba may be written as:

Sab < S 1 S, ab3ab*a?b (6)
which yields the value:

L3(n) =14+ 1log3 + 2log2 = 15.079 (7)
The process of coding more and more properties of
order and types of repetition to obtain a shorter de-
scription has no end, making the Kolmogorov com-
plexity not computable. However Papentin’s proce-
dure is one way of obtaining an upper bound on the
Kolmogorov complexity, and thus gives a computable
and practical approximation. The more time and inge-
nuity one expends the sharper the bound obtained. For
further hierarchical levels of description languages, the
reader is referred to the papers by Papentin [12], [13].
However, it was found through experimentation that
for the short sequences that make up in the datasets
used in the present study, the shortest descriptions
were obtained with the L; measure. Furthermore,
this measure has the added attractive feature that it
is computationally very efficient. A simple traversal
of the sequence yields the number of runs of identical
symbols, as well as the number of repetitions in each
run, and therefore L;(n) defined in Equation 1 may be
computed in O(n) worst-case time. By contrast, the
straightforward approach to calculating the weighted
sum of all the sub-symmetries takes O(n?) time, and
even the most efficient O(n) algorithm of Manacher for
just counting the sub-symmtries is complicated [10].

3.2 Two-dimensional Papentin complexity

In the present study the one-dimensional Papentin
complexity measure was extended to two-dimensional
patterns in the same manner as the Alexander-Carey
extension. That is, the measure L;(n) defined in Equa-
tion 1 was calculated for each row, column, positive-
slope diagonal and negative-slope diagonal of the pixels
of a pattern. The resulting individual values may then
be added to obtain measures for only vertical and hori-
zontal complexities, only diagonal complexities, or the
complexity of all four directions together.

4 Experimental Results

4.1 The Chipman dataset

The Chipman dataset [4] consists of 45 patterns,
each composed of 12 black equal-size squares on a white
background. The black squares are obtained by select-
ing 12 squares from a square 6 X 6 matrix or grid.
Three patterns from this dataset are illustrated in Fig-
ure 2. The top row shows the patterns embedded in

482

Table 1. Spearman rank correlation coefficients.

Symmetry Type SS-W SS PLy
Vertical-M —0-843** —0-831** 0-340**
Horizontal-M —0-804** —0-807**  0-630**
Diagonal-PS-M —0-097 —0-086 —0-109
Diagonal-NS-M —0-002 0-002 —0-035
90° —0-531** —0-532**  0-630**
180° —0-606™* —0-519**  0-340**
270° —0-531** —0-532** 0-630**
Ver+Hor —0-865** —0-872**  0-725**
DPS+DNS —0-026 0-006 —0-075
V+H+Diagonals —0-730 —0-727* 0-284*
90° + 180° + 270° | —0-653** —0-583** 0-700**
TOTAL —0-734** —0-689** 0-601**
p < 0.05 and p < 0.01 are indicated by * and **

the 6 x 6 grid, along with their label at the top, and
the complexity value obtained from the human judg-
ments underneath. The bottom row shows how they
were actually presented to the human subjects, with-
out the underlying grid lines. Fifteen of the patterns
were constructed so as to have simple structure, fifteen
have complex structures, and fifteen were constructed
by selecting 12 out of the 36 squares at random. The
rightmost pattern is one such random pattern. The
subjects consisted of eight graduate students from the
Psychology Department at Harvard University. The
reader is referred to the paper by Chipman for further
details of the experimental procedure. Although eight
is minimal number of subjects, it was large enough to
obtain statistically significant results.

4.2 Calculation of the complexity measures

Three measures of complexity were calculated for
each of the 45 patterns in the Chipman dataset, under
seven different symmetry operations of the patterns.
These operations consisted of (1) vertical mirror sym-
metry (Vertical-M), (2) horizontal mirror symmetry
(Horizontal-M), (3) mirror symmetry about a diago-
nal line of positive slope (Diagonal-PS-M), (4) mir-
ror symmetry about a diagonal line of negative slope
(Diagonal-NS-M), (5) rotation by 90 degrees (90°), (6)

13 15 19
C=07 C=209 C=449

1 = .~

Figure 2. Three patterns from the Chipman data.



rotation by 180 degrees (180°), and (7) rotation by
270 degrees (270°). These calculations produced rank-
ings of the 45 patterns by each complexity measure.
These rankings were then compared with each other
and with the ranking obtained from the human judg-
ments by means of Spearman rank correlation coeffi-
cients between the rankings. The results are shown
in Table 1, where SS-W denotes the weighted sub-
symmetry measure used by Chipman [4], SS denotes
the original sub-symmetry measure of Alexander and
Carey [2], and PL; denotes the Ly (n) complexity mea-
sure of Papentin [12], [13] calculated using Equation 1.
The table also lists five combined scores for: the ver-
tical plus horizontal sub-symmetries, the sum of the
diagonal scores, the sum of the vertical, horizontal and
diagonal scores, and finally, the sum of the four mirror
symmetries and the three rotational symmetries (TO-
TAL). The statistical significance levels of p < 0.05 and
p < 0.01 are indicated, respectively, by * and **. Re-
garding the computation of the Papentin L;i(n) com-
plexity, the description lengths were calculated such
that the one-dimensional sequences examined were or-
thogonal to the axes of mirror symmetries. For exam-
ple, for the Vertical Mirror symmetry (vertical axis),
the sub-symmetries were calculated horizontally along
the rows of the pattern, and so were the Papentin com-
plexities, making it more convenient to compare com-
pression with symmetry.

5 Conclusions and Further Research

Several conclusions are clearly evident from Table 1.
For all three complexity measures, and the seven indi-
vidual symmetry transformations, the correlation with
human judgements is highest for vertical mirror sym-
metry, then for horizontal mirror symmetry, and fi-
nally for rotational symmetries. These results support
psychological evidence that the most salient reflection
symmetries perceived by the brain are: foremost, re-
flection about the vertical axis [19], followed a hori-
zontal axis, and then diagonal axes [11]. The high-
est correlations were obtained for the sum of vertical
and horizontal mirror symmetries. The weighted sub-
symmetry measure of Chipman performed slightly bet-
ter than the Alexander-Carey measure, suggesting that
placing more weight on the larger sub-symmetries is a
good strategy. Although the Papentin L;(n) complex-
ity is highly and significantly correlated with human
judgments of complexity, both sub-symmetry measures
outperform the Papentin L;(n) complexity in this re-
gard. The patterns used in this study were small
(6 x 6), and a natural question arises as to how the
results presented here will scale up for larger images.
It is possible that for larger patterns, complexity mea-
sures based on higher hierarchical levels in Papentin’s
framework may yield shorter descriptions than L;(n),
and may become competitive with sub-symetries in
terms of modeling human judgments of visual com-
plexity. Such studies are planned for the future.
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