
Spatio-Temporal Descriptor for Abnormal
Human Activity Detection

Fam Boon Lung, and Mohamed Hisham Jaward
Electrical and Computer System Engineering, School of Engineering

Monash University
Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya Selangor, Malaysia

{fam.boon.lung, mohamed.hisham}@monash.edu
Jussi Parkkinen

University of Eastern Finland
P.O. Box 111, Fl-80101 Joensuu, Finland

jussi.parkkinen@uef.fi

Abstract

There has been an increased interest in the field
of abnormal human activity detection to find a good
descriptor with a lower computational cost. In this
paper, we propose such a Spatio-Temporal Descriptor
(STD) based on spatio-temporal features of an image
sequence. Proposed descriptor is based on a texture
map, known as Spatio-Temporal Texture Map (STTM)
and is based on 3-dimensional Harris function. It is
able to capture subtle variations in the spatio-temporal
domain. Performance of the STD was illustrated with
a mixture of Gaussian Hidden Markov Model (HMM)
to show its potential for more complex modeling. Pro-
posed algorithm was evaluated with UCSD dataset that
has abnormal events that are not staged such as biker,
skater, cart activities etc. Compared to other state of
the art descriptors that are used with the same dataset,
our proposed descriptor shows competitive performance
with a lower computational cost.

1 Introduction

Recently, there has been an increased interest on re-
search on human activity recognition in video surveil-
lance due to need for better security and intelligent
health monitoring [1, 2]. Abnormal human activity is
defined as the human action which stands out and re-
quires more attention and this depends on the context
of scene considered. Abnormal human activity often
has the properties of irregular pattern [1] and being an
event that occur at a low frequency relative to a nor-
mal event [3]. Abnormal human activity detection is
thus accomplished by finding the outliers of the normal
event due to low occurrence of such anomaly.
Modeling of abnormal human activity detection

highly depends on the performance of the descriptor.
In order to clearly classify between normal and abnor-
mal events, a good descriptor that is distinguishable
among each activity and easy to model is highly sought
after [1, 2]. Traditional optical flow [4] that finds the
pixel changes between 2 consecutive frames, was widely
used in early papers [1, 2]. The approach proposed in
optical flow constrains the problem of activity detec-
tion to be between two frames with consistent illumi-
nation constraint. This result in a lot of deficiencies in
the descriptor especially when the anomaly can only
be observed in a longer temporal space. The problem

of illuminance change especially in outdoor scene has
also been an another problem with such an approach.
In order to overcome these problems, different descrip-
tors such as mixture dynamic texture [3, 5], sparse re-
construction cost [6] and frequency transform [7] have
been proposed.
Among different sophisticated descriptors used in

these approaches, recently proposed mixture of dy-
namic texture (MDT) [3, 5] has shown promising re-
sults. MDT is an image compression technique that
model the probability of each pixel point using a lin-
ear dynamic system [8]. This work is further improved
to include spatial constrains of the scene in the appli-
cation of abnormal human activity recognition [3, 5].
The extensive modeling of each pixel points in spatial
and temporal domain has lead to a good performance
of the descriptor but at a high computational cost.
The application of extending detection of spatial

features to spatio-temporal domain has been a new
trend in activity recognition [9]. Among many spatio-
temporal detector used in activity recognition, spa-
tial temporal interest point (STIP) detector has shown
promising results in many cases [10]. STIP concept is
based on Harris function [11,12] to consider the varia-
tion along the spatial and temporal domain to find ge-
ometric points, also known as landmark points, which
are interest points with relatively high variances. By
tracking landmark points in STIP detectors, shape and
motion characteristics of the video can be recorded.
STIP has been tested on action class of varying diffi-
culty [13] and proven to be successful in tracking for
many cases. STIP has an strong advantages in com-
putational cost as the calculation of the singular value
decomposition is replaced by finding the determinant
and trace. The relatively faster computation speed of
STIP makes the algorithm suitable to be explored for
abnormal human activity detection to achieve better
performance with a lower computational cost.
Motivated by the work on STIP, we propose the use

of Spatial Temporal Texture Map (STTM) and its de-
scriptor, Spatio-Temporal Descriptor (STD) for abnor-
mal human activity detection. Instead of detecting
multiple interest points in STIP, we consider spatio-
temporal variations of texture in videos sequences for
the detection of abnormal human activity. In this pa-
per, the Harris corner detector as used in STIP is used
to form the Spatial Temporal Texture Map (STTM)
representation of the videos. By taking the histogram
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of the STTM, our novel STD is generated to represent
the scene. The STD is generated for the all the video
including the training video that contain only normal
human activity and the testing video where anomaly
event occurs. Both cases are respectively modeled and
tested using a mixture of Gaussian hidden Markov
model.
The organization of the paper is as follow: In section

2, we present the details of STD formulation. Multiple
experiments are conducted to validate the performance
of STTM and the discussion on the performance of
STD are included in section 3. Finally, future work
are concluded in section 4.

2 Motion Representation and Descriptor
Generation

2.1 STTM Representation

In spatio-temporal domain, a given video V (x, y, t)
can be modeled by L : �2 ×�×�2

+ �→ � using linear
scale-space representation [14],
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The spatio-temporal variation of the video can be
obtained from Harris function [11,12]. Given any spa-
tial variance, σ2

i and temporal variance, τ2i , the varia-
tion of the video along spatial domain (x, y) and tem-
poral domain (t) can be obtained as
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where Lx, Ly, and Lt are the partial derivatives
of scale-space representation. This represent the
smoothed version of spatio-temporal second moment
matrix.
The main properties of μ matrix can be easily found

by inspecting the significant eigenvalues λ1, λ2 and λ3

of μ. The product and summation of the significant
eigenvalues are used to construct extended Harris func-
tion for spatio-temporal domain. The Harris function
could be expressed using the determinant and trace of
μ as follows

H = λ1λ2λ3 − k(λ1 + λ2 + λ3)
3

= det(μ)− k trace3(μ) (4)

where k is a constant. The Harris function is applied to
pixel points to generate a 3 dimensional Harris-matrix.

Every temporal (t) layer of the Harris-matrix forms a
STTM representation of the image. This STTM as
shown in figure 1 highlights the texture variation of
the image pixels in the spatio-temporal domain.
STTM is normalized with a global maxima value of

the training video to limit the dynamic range of data
values. In STTM not only considers spatio-temporal
interest points of high variance but all points are taken
into account. STTM is capable of detecting subtle
changes in the frame and this could be easily observed
in the figure 1. High intensity values in the texture
map denote the anomaly in the scene and they are
shown in a rectangular box in figure 1.

2.2 STD Formulation

STD is obtained from STTM and is explained be-
low. In order to consider location specific anomalies,
the STTM, as illustrated in figure 1, is divided into
2x2 blocks. Then a histogram with non-uniform quan-
tization for bin values as shown in figure 2 is generated
for each of 4 blocks of STTM to record the variation
at different times. After histograms with non-uniform
quantization are obtained for each block, the bins of
lower value range (the first few bins) of the histograms
are removed as they represent the background motion.
Finally, the remaining bins of the 4 histograms are con-
catenated to form the descriptor. The purpose of us-
ing non-uniform quantization is to give some empha-
sis on motion with slight variations. Such emphasis is
achieved using the A-law compression [15]. The com-
pression parameter, A value of the A-law is tuned to
attain best performance.

Figure 1. STTM representation of image

Figure 2. Histograms of a STTM section
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3 Simulational Experiments

To test the performance of the descriptor, the UCSD
dataset [3] is selected. In this dataset, anomalies oc-
cur naturally and are not staged. UCSD dataset con-
tains 2 sets of pedestrian videos. The first set of the
videos from the front view consists of 34 training and
36 test videos while the second set of videos consists
of side view where 16 training and 12 test videos are
available. The training videos only contain footage of
normal event which is pedestrian walking. Anomalies
in the test videos include bikers, skaters, small carts,
wheel chairs, etc. For all videos, a STTM is computed
and STD is generated to represent every frame.
To optimize the result, two experiments are con-

ducted where parameters of Gaussian Kernel and STD
are tuned. A simple mixture of Gaussian Hidden
Markov Model (HMM) is used in both experiments to
classify the scenes. Mixture of Gaussian HMM is used
widely in abnormal human activity detection [1] and
has given good results in many cases.
The proposed STD can be easily trained using the

mixture of Gaussian HMM to capture the abnormali-
ties of the scene that are unconstrained during train-
ing. Mixture of Gaussian HMM is mainly defined by
the number of Gaussian mixture (M) and number of
states (Q). In both two experiments, M is set to be
1 and Q is set to 2 for simplicity. Note that the over-
all distribution of STD for each frame must be close
to Gaussian [16] in order for the mixture of Gaussian
HMM to be effective.
In our experiments, the log likelihood obtained for

the testing videos sequence using the Gaussian mix-
ture HMM is compared to the ground truth provided
from the UCSD dataset. Since the log likelihood is a
scalar, a threshold value need to be chosen to find the
optimum detection. By varying the threshold, a Re-
ceiver Operating Characteristic (ROC) curve can be
obtained. The optimum point for maximum detection
for such condition will be the equal error rate (EER)
point where the ROC curve intercepts with the EER
line as shown in figure 3 and 4.

3.1 STD Parameter Validation

In our experiment 1, the parameters of the Gaus-
sian kernel that are used to generate STTM are tuned.
The spatial variance, σ2

i and temporal variance, τ2i of
the Gaussian kernel parameters are varied to test for
different conditions. After the STTM is obtained, a
single histogram is computed and upper portion of the
histogram are taken as the STD. STD for each frame
are then trained using a mixture of Gaussian HMM.
Similarly, STD for the test videos are produced and
tested using the mixture of Gaussian HMM. The log
likelihood for each frame is compared with the ground
truth to obtain the ROC curve and EER can be found
from the ROC curve. By comparing the EER obtained
for different STTM parameters, the best parameters
are found. The best performance with the lowest EER
for pedestrian 1 and 2 dataset is respectively 32.93%
and 39.5% when the STTM is generated using param-
eters, σ2

i=5 and τ2i =1.
In experiment 2, after the STTM is computed as ex-

plained above, other parameters of STD are adjusted.

The A value of A-law compression are varied to op-
timize the descriptor performance. After the optimal
A value is found, the total number of bins in the his-
tograms is varied. The total number of removed bins
at the lower end is changed as well to create different
STD. The final set of the bins is taken to be the op-
timal STD. STD is then modeled using a mixture of
Gaussian HMM where the log likelihood obtained is
compared to the ground truth to get the ROC curve.
As shown in figure 3 and 4, A value used by the A-

law compressor effects the ROC curve and the EER
found. In the best case, the selected A value of 717
used in A-law compressor results in achieving optimal
EER of 32.42 % in pedestrian 1 dataset while optimal
EER of 28.45 % is obtained for pedestrian 2 dataset
using a A value of 24. The effect of using A-law com-
pressor is more significant in pedestrian 2 dataset as
shown in figure 4 where the ROC curves deviate a lot
for the best and worst case values of A.

Figure 3. Pedestrian 1 ROC curve for different A
value

Figure 4. Pedestrian 2 ROC curve for different A
values

3.2 Results and evaluation

An important criterion in evaluating the perfor-
mance of the algorithm is to compare the EER value.
Table 1 shows the EERs of different descriptors. The
mixture of dynamic texture (MDT) for temporal case
[5] has the best performance compared to all other
methods while our proposed method comes second.
This is followed by other methods including Mixture
of Principle Component Analysis (MPPCA) [17], So-
cial Force (Force Flow) [18], MDT for spatial case [5]
and Local Motion Histogram (LMH) [19]. An initial
evaluation has been performed to compare the compu-
tational speed of MDT and our proposed STD. The
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evaluation results are shown in table 2. A dedicated
computer with Intel Core 2 Duo CPU T5800 @2 GHz,
4GB RAM and 64 bit Linux system is used in this
evaluation. When running in MATLAB environment,
MDT algorithm takes 114.343 seconds for every test
frame while our proposed algorithm only requires 5.145
seconds. MDT’s slow computation speed rise from the
application of multiple state space model in the for-
mulation of the descriptor while our proposed work is
faster as it works by extracting only minimal amount
of information in spatial temporal domain.

Table 1. EER results

Descriptor Ped1 Ped2 Average
MDT-temp. 22.9% 27.9% 25.4%

Proposed STD 32.4% 28.5% 30.5%
MPPCA 35.6% 35.8% 35.7%
Force flow 36.5% 35.0% 35.8%
MDT-spat. 43.8% 28.7% 36.3%

LMH 38.9% 45.8% 42.4%

Table 2. Computational cost

Descriptor Time taken per frame
MDT-temp 114.343s

Proposed STD 5.145s

4 Conclusion

In this paper, we proposed a novel abnormal hu-
man activity descriptor, STD, that can describe the
variation of texture in spatial and temporal domain.
The experiments illustrate the performance of STD
when modeled with mixture of Gaussian HMM. Com-
pared with other algorithm using the UCSD dataset,
we showed that our descriptor has relatively low EER
and through the use of trace and determinant in com-
puting STTM, we achieved lower computational cost.
As our future work, we plan to evaluate the computa-
tional speed of other descriptors and experiment with
other datasets.
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