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Université de Bourgogne, FR
jilliam.diaz@iee.lu

Cédric Demonceaux
Le2i Laboratory/CNRS
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Abstract

This paper presents an approach to determine the
spatial arrangement of bones of horses in an excavation
site and perform the 3D reconstruction of the scene.
The relative 3D positioning of the bones was computed
exploiting the information in images acquired at differ-
ent levels, and used to relocate provided 3D models of
the bones. A novel semi-supervised approach was pro-
posed to generate dense point clouds of the bones from
sparse features. The point clouds were later matched
with the given models using Iterative Closest Point
(ICP).

1 Introduction

In the current project, the interest of the archaeol-
ogists lay in studying rites performed in Iron Age so-
cieties through the analysis of spatial arrangements of
excavated relics and, more importantly, animal skele-
tons. The spatial arrangement of animal bones might
indeed shed some light on certain religious practices [1],
[2], [3]. This generally required working on replicas
of the excavated bones, or better, digitized instances
of these. To this end, a comprehensive library of 3D
models representing the entire skeleton of a horse ob-
tained using a 3D laser scanner was built. However, in
order to recover the entire 3D model of the animal’s
skeleton, the digitized bones needed to be positioned
in space by relying on photographs captured in situ
while documenting the excavation process.
Thus, the primary objective was to determine the

spatial arrangement of bones of horses found in an ar-
chaeological site, to obtain the 3D reconstruction of
the scene. The reconstruction was limited by the low
number of images, acquired at different levels during
the excavation process, some of them with changes in
the scene lighting and with incomplete or partially oc-
cluded bones. Furthermore, the calibration of the cam-
era was not available and according to the EXIF tags,
the focal length was changed when acquiring different
views of the scenes.

2 Proposed approach

Considering the aforementioned limitations, a semi-
supervised method for the 3D reconstruction of the
scene was proposed. The approach can be summarized
in five steps, depicted in Figure 1:

(1) Object extraction.

(2) Feature detection and matching.

(3) Generation of additional points.

(4) 3D reconstruction.

(5) Point cloud matching.

In order to perform the 3D reconstruction, at least
two views of the scene had to be available.

2.1 Object extraction

The first step was to specify the location of each
bone within each image and subtract the background.
This process was realized by interactively extracting a
binary mask for each bone in each pair of images. One
example of this procedure can be observed in Figure 2.

Figure 2. Original image (left). Binary mask de-
noting the location of the skull (center). Skull
extracted using the binary mask (rigth).

2.2 Feature detection and matching

As a second step, the feature points of the resulting
images were extracted by using the following detectors:

• Features from Accelerated Segment Test (FAST)
by Rosten and Drummond[4].

• Speeded-Up Robust Features (SURF) by Bay et
al[5].

• Maximally Stable Extremal Regions (MSER) by
Matas et al[6].

• Harris corners by Harris and Stephens[7].

• Minimum eigenvalue by Shi and Tomasi[8].
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Figure 1. Proposed approach.

It was necessary to implement all these methods
since the texture in some regions was homogeneous,
and consequently, the number of features points was
sparse.
From these points, features vectors were extracted

using SURF [2]. During the feature matching, the out-
liers were eliminated using RANSAC.

2.3 Generation of additional points

In most cases, regardless of using all the algorithms
of point detection, the number of feature points was
sparse and not uniformly distributed in the whole re-
gion. This led to some mismatching during the com-
parison of the clouds of points.
In order to automatically avoid the previous prob-

lem, additional points were added uniformly to the
area of interest in one image and projected in the sec-
ond one assuming an affine transformation F between

the two images, i.e.,

(
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)
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)
[9], with (u, v)

and (x, y) the coordinates of the same point in two im-
ages. This process was done after verifying that the
number of matched points was at least 5.
The transformation can also be expressed as:
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If a = cos(θ) and b = sin(θ), the previous equation
becomes the linear system presented in (1), or Ax = b,
and can be solved using linear least squares (2).
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2.4 3D reconstruction

The extrinsic parameters were not available in the
real scenes, and despite neither the intrinsic param-
eters, a rough calibration matrix could be computed
using the EXIF tags under certain assumptions. How-
ever, in most cases the focal length was modified from
one image to another.
Considering these limitations, the scenes were recon-

structed from the points using Structure from Motion
(SfM), assuming that the camera was not projective.
The toolbox of Vincent Rabaud[10] was employed in
this section.

Within this toolbox, if the number of frames was
equal to 2, the Gold Standard for Affine camera ma-
trix method was implemented to find the projection
matrices. If the number of frames was greater than
2, Tomasi-Kanade and autocalibration methods were
used.
The projection matrices, P and P ′, were computed

using the toolbox and the original set of points were
extracted from each pair of images. Afterwards, the 3D
scene was reconstructed with the full set of points us-
ing Direct Linear Transformation (DLT), equation (3),
from the homogeneous coordinates of the points in
both images (x, y, 1) and (x′, y′, 1). The reconstructed
scene Xn was computed by using SVD of the 4x4 ma-
trix and selecting the singular vector of the smallest
singular value[9]. It corresponded to the cloud of points
used in the next step.⎡

⎢⎢⎣
xp3T − p1T

yp3T − p2T

x′p3T − p′1T

y′p3T − p′2T

⎤
⎥⎥⎦
4×4

Xn4×1 = 04×1 (3)

2.5 Matching of point clouds

The previously reconstructed bones were normalized
and matched with their correspondences in the set of
3D models, using Iterative Closest Point (ICP). The
task was performed with the ICP toolbox of Wilm
and Kjer [11], which included three different match-
ing methods: Brute force, Delaunays and K-D tree.
Finally, the 3D models were repositioned according

to the transformation provided by the toolbox. The
sizes of the given models were resized to fit the ex-
tracted cloud of points.

3 Set of images

The set of images can be divided in two main scenes,
as shown in Figure 3:

(a) Arrangements of bones of the leg (Scene 1 and 2).

(b) Arrangements of bones at different excavation lev-
els (Scenes 3, 4 and 5).

A pair of images was provided for scenes 1, and 3 -
5, and three images for scene 2. One image per scene
is displayed from Figure 6 to 10.

4 Experiments and Results

Below are presented the results obtained at different
stages.
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Figure 3. Main scenes: bones of the leg (left) and
diverse bones (right).

4.1 Feature detection and matching

As mentioned before, the feature points were ex-
tracted using FAST, SURF, MSER, Harris corners
and Minimum eigenvalues, and the matching was per-
formed from feature vectors computed with SURF.
The outliers were eliminated with RANSAC, using the
epipolar constraint. The inliers of ’Scene 4’ can be ob-
served on the top-left image of Figure 4. The matching
of the additional points generated assuming an affine
transformation is shown at the top-right image of the
same Figure, and a close-up of them are presented at
the bottom images.

Figure 4. Matching of feature points and addi-
tional generated points for the scene 4: features
points (top left), generated points (top right),
close-up of generated points (bottom).

4.2 3D reconstruction

Initially, a synthetic scene created from one of the
3D models was used to test different reconstruction al-
gorithms. The intrinsic and extrinsic parameters were
assumed to be known. Two resulting images were com-
puted using equation (4), where X represents the co-
ordinates of the points in the 3D world and x the 2D
points in the pixel coordinates[9].

x = K [R|T ]X (4)

As the calibration was available, the essential matrix
was computed from equation (5) and the fundamental
matrix from equation (6), using the essential matrix.

E = [t]x R (5)

F = KT−1 · E ·K−1 (6)

The 3D scene Xn was estimated with the Direct Lin-
ear Transformation method as from equation (3).
Afterwards, the back projection was computed from

x = PXn, to calculate the residual error using the
projection matrices.
The process was repeated one more time, assuming

that the essential matrix was not available, and there-
fore, using the feature points. For the selected model,
the error using the fundamental matrix obtained from
the essential matrix was of 0.00554, and using the fea-
ture points, of 0.0082. These results showed the va-
lidity of implementing Direct Linear Transformation
method for the reconstruction of synthetic scenes, us-
ing the essential matrix or the feature points.
For the real scenes, as explained in subsection 2.4,

the projection matrices were computed with the SfM
toolbox, using the methods for uncalibrated cameras.
These matrices were later implemented to perform the
3D reconstruction of the scene by using DLT.

4.3 Matching of point clouds

The cloud of points generated for each bone was
matched with the corresponding 3D model using three
algorithms of ICP: Brute force, Delaunays and K-D
tree. One result after using ’K-D tree’ is shown in Fig-
ure 5.

Figure 5. Point clouds matching. Blue: Recon-
structed bone. Red: Provided 3D model.

Afterwards, the set of 3D models were arranged to
reconstruct the scenes. The resulting reconstructions
using the three ICP algorithms were nearly the same,
with differences in the execution time. Figures 6 to 10
show the reconstructed scenes using the ’K-D tree’ al-
gorithm.
The execution time in seconds of each ICP algorithm

is presented in Table 1.

Table 1. Execution time (s) of each ICP algo-
rithm.

Scene
1 2 3 4 5

Brute
Force

24.97 16.79 23.99 28.13 23.03

Delaunay’s 99.49 56.31 79.98 78.65 78.48
K-D tree 8.22 2.73 4.05 5.25 4.52

Since the acquired images did not cover many differ-
ent views from the bones, the real depths of the bones
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were not fully reconstructed. This led to the mismatch-
ing in the orientation of some bones, such as the bone
in Figure 7 which was upside down in the reconstructed
scene, but in general, the results were satisfactory.

Figure 6. Scene 1: Original image (left), recon-
structed scene (center) and point clouds match-
ing results using K-D tree.

Figure 7. Scene 2: Original image (left), recon-
structed scene (center) and point clouds match-
ing results using K-D tree.

Figure 8. Scene 3: Original image (left), recon-
structed scene (center) and point clouds match-
ing results using K-D tree.

Figure 9. Scene 4: Original image (left), recon-
structed scene (center) and point clouds match-
ing results using K-D tree.

Figure 10. Scene 5: Original image (left), recon-
structed scene (center) and point clouds match-
ing results using K-D tree.

5 Conclusions

In this paper, a set of computer vision tools was
implemented to determine the spatial arrangement of
bones of horses during the excavations. One of the
goals was to create cloud of points of the bones, by
using the information of the images, to relocate the
3D models. In order to do so, features points were ex-
tracted for each bone using different detectors. Due to
the low number of points to construct a point cloud,
additional points were generated assuming an affine
transformation. Despite having some outliers in the
feature points, the resulting generated points were ac-
curate.
SfM for uncalibrated cameras was implemented to

find the projection matrices and the Direct Linear
Transformation method was used for the reconstruc-
tion. The results obtained after applying three algo-
rithms of ICP, Brute force, Delaunays and K-D tree
were the same, despite the execution time varied from
one to other, being K-D tree the fastest and Delaunays
the slowest.
Future research will aim to automate the segmen-

tation and object extraction step. Additional features
detectors will be tested in order to find the most suit-
able for this type of application.
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