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Abstract

Combined road marking and traffic sign databases
are beneficial for both road maintenance and for us-
age within navigation devices and autonomous driv-
ing vehicles. The combination of both markings and
signs completely provides all instructions and legis-
lation for drivers. This paper presents a conceptual
system for the automated creation of such combined
databases and investigates the benefit of this combina-
tion for the specific case of pedestrian crossings. Eval-
uations on 62 km of road have shown that individual
detection of road signs and markings indicating pedes-
trian crossings is very accurate (≥ 95%), enabling se-
lective safety analysis towards these specific locations.
Combining both approaches enables very accurate iden-
tification of crosswalks and additionally leads to the
retrieval of crossings with undetectable markings or
signs, such that maintenance can be directed specifi-
cally towards these potentially dangerous crosswalks.

1 Introduction

Accurate mapping of road signs and road markings
is essential for maintaining a high road safety, as the
resulting databases allow for checking discrepancies be-
tween the desired and observed sign and marking place-
ments. Such databases can also be embedded in navi-
gation devices, for example to warn road users for up-
coming alerting situations such as give-way locations
or pedestrian crossings. These databases also may con-
tribute to a higher navigation quality, e.g. by selecting
the most efficient route that features the least amount
of stops or give-way situations. These databases are
also beneficial for usage within autonomous driving
vehicles, i.e. by already decreasing speed when a give-
way situation is coming up along its route, even when
the sign is not yet visible. This also contributes to a
smooth ride and a reduction in fuel consumption. This
paper describes a combined approach for the recogni-
tion of road markings and road signs from street-level
images, aiming at the reliable mapping of pedestrain
crossings to enable novel safety and consistency checks.
Generation of databases of road signs and road

markings from street-level images is an popular re-
search topic. For example, several systems are de-
scribed for creating surveys of road signs from street-
level images [1, 2, 3, 4]. Most of such systems focus on
the recognition of signs in single images, while only few
also identify their 3D positions [2, 3]. Road-marking
recognition systems can be based on LiDAR [5] or can
exploit street-level images [6, 7, 8, 9]. Combined gen-
eration of such databases is less commonly explored,

Figure 1: Example of the road markings and road sign
indicating a pedestrian crossing.

although Choi et al. [10] describe the combination of
crosswalk and traffic light detection.
Although most legal information is denoted by road

signs, combined databases of traffic signs and road
markings allow for more detailed assessments of the
actual road situation. Therefore, this paper explores
the combined recognition of road signs and markings,
which is attractive for the following reasons.

• Accuracy : focusing on two different types of infor-
mation (markings and signs) containing partially
redundant information which can be exploited to
attain a higher surveying accuracy.

• Consistency checking : the co-occurrence and co-
location of signs and markings that contain redun-
dant information can be validated. For example,
each pedestrian crossing should be indicated by
both road markings and signs.

• Information content : road signs and road mark-
ings comprise both redundant and complementary
information. In some situations, they provide re-
dundant information (i.e. in case of a give-way
situation), while in other situations only signs or
markings are present. Combined databases will
therefore provide a larger amount of information.

• Localization: road signs are placed at a certain
distance in advance of the situation they apply to,
while road markings indicate the exact location.
For example, a stop sign can be placed up to 10
meters before the stop line.

This paper describes a conceptual system for the
combined recognition of traffic signs and road mark-
ings, aiming at the generation of a combined database
of road markings and signs. Additionally, we will
present a case study for the surveying of pedestrian
crossings, which is important for various tasks. First,
a database of pedestrian crossing locations allows for
safety inspections at those locations, which are nec-
essary to maintain a high road safety, as missing or
poorly visible signs or road markings cause potentially
dangerous situations. Such databases not only allow
for efficient checking based on the street-level images,
but additionally feature automated consistency valida-
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Figure 2: Example of an equirectangular input image.

tions, such that manual checks can be reduced, where
the remaining checks are focused on the potentially
unsafe crosswalks. Second, such databases aid both
navigation (as routes with lots of pedestrian crossings
may cause large delays) and autonomous driving vehi-
cles (since they can anticipate them, even if they are
not yet visible from the car itself). Figure 1 shows an
example of a pedestrian crossing and its road sign.
Although we concentrate on surveying pedestrian

crossings, it should be noted that the proposed
methodology is generic towards other traffic signs and
road markings, as learning-based approaches are used.
The remainder of this paper starts with a description

of the employed source data in Sect. 2. We then pro-
vide a brief overview of the road-sign and road-marking
recognition systems in Sect. 3 and Sect. 4, respectively.
The performed experiments and results are described
in Sect. 5, followed by the conclusions in Sect. 6.

2 Source data description

The combined recognition systems described in this
paper operate on street-level panoramic images, which
provide a recent and accurate overview of the road in-
frastructure. These images are acquired at a large scale
and are recorded at all public roads within the target
area, using a capturing interval of 5 m. The record-
ing vehicles drive along with regular traffic at normal
speeds. The cars are utilized in an efficient way by
capturing during daytime during all kinds of weather
conditions, including sunny, cloudy and foggy weather,
and directly after (but not during) rain or snow.
The panoramic images have a resolution of 2, 400×

4, 800 pixels. The capturing location is also accurately
known for each image, based on a high-quality posi-
tioning system featuring both GPS and IMU devices.
The employed capturing systems are calibrated pre-

cisely, resulting in panoramic images that are mapped
to a sphere, on which angular distances can be mea-
sured. The resulting images are stored as equirectan-
gular images, which have a linear relationship between
the pixel coordinates within the image and the viewing
directions in horizontal and vertical directions. This al-
lows for the calculation of the real-world 3D positions
based on triangulation. The position of an object can
be retrieved in case multiple points (≥ 2) correspond-
ing with the considered object are found in multiple im-
ages, using straightforward geometrical computations.
Figure 2 displays an example image.

3 Road-sign recognition system

The road-sign recognition system processes all
panoramic images captured within a region of interest,
and is described extensively in [3]. Figure 3 displays

Figure 3: Overview of road-sign recognition system.

the system overview. Each main system component is
briefly summarized below, and more extensively in [3].

3.1 Single-image sign detection

At first, each panoramic image is analyzed and the
present signs are detected by multiple, independent de-
tectors, each focusing at a specific class of signs (i.e. red
circular restriction signs). These detectors are based
on the popular Histogram of Oriented Gradients [11]
technique. We have extended the original approach
with the use of color gradient information, in order to
exploit the color transitions, both within the signs and
between the sign and surroundings.
The road-sign recognition system currently employs

detectors for 11 different sign appearance classes.

3.2 Multi-view sign positioning

The next step is computing the real-world coordi-
nates of the road signs by combining all detections rep-
resenting the same physical sign. This process exploits
the geometrical properties of the used images, which
directly results in a 3D location when ≥ 2 points cor-
responding to the same object are known in different
images. Each detection is combined with all other de-
tections of the same sign appearance class found in
closeby images, and each combination results in an
hypothesis of the sign position, which are clustered
around the real sign position. These clusters are re-
trieved using the Mean Shift Algorithm [12], with the
constraint that each sign contains at least 3 detections.
This process operates independently per sign appear-
ance class, such that for each positioned 3D sign both
its location and sign class are available.

3.3 Multi-view sign categorization

Each positioned 3D sign is assigned a sign category.
This categorization task is based on Bag of Words [13],
which aims at the identification of the sign category,
based on the occurrence counting of specific key pat-
terns. Our approach exploits densely extracted SIFT
descriptors as key patterns and compares these pat-
terns to a large dictionary (∼ 10, 000 entries, different
for each sign appearance class) and then determines
the sign category using a linear SVM. Each detection
used during positioning of the sign is categorized in-
dependently, after which weighted voting is employed
to retrieve the category of the positioned sign. This
process also involves estimation of the sign orientation
angle, indicating the road lane a sign applies to. This
processing stage is extensively described in [14].
All found signs have now a location and sign type.

Currently, the road-sign recognition system discrimi-
nates 176 different sign types. As this paper focuses
at pedestrian crossings, we will further ignore all non-
pedestrian crossings signs.
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Figure 4: System architecture of the road-marking
recognition system.

4 Road-marking recognition system

The road-marking recognition system processes all
panoramic images captured within a region of interest
and follows a similar architecture as the recognition
systems described in literature [6, 7, 8, 9]. Figure 4
displays the system overview, of which each main sys-
tem component is summarized below.

4.1 Single-image detection

Prior to determining the positions of the road mark-
ings, each panoramic image is remapped to a top-down
view using Inverse Perspective Mapping (IPM), which
is then processed as follows.

Image segmentation: In general, road mark-
ings are brighter than the road, so image regions that
have a high local intensity are extracted. This in-
volves calculation of the intensity difference between
the grayscale pixel values and the average graycale in-
tensity in a rectangular window around each consid-
ered pixel. A binary segmentation is then obtained by
applying Otsu’s threshold method on the found dif-
ferences. Next, all connected components (groups of
neighboring pixels) are extracted.

Contour classification: The contour of each
connected component is extracted and represented by
a feature vector to determine the road-marking type.
First, all contours are translated to their centroid (ge-
ometric center) to attain translation invariance. Using
Principal Component Analysis, each contour is then
rotated to align its primary axis to be rotation invari-
ant. Scale invariance is not used here as it is relevant
for determining the marking type. Secondly, we ex-
tract the distance from the contour centroid to the
edge at set angular intervals as feature values, since
road markings have highly regular and convex shapes.
This is illustrated in Fig. 5. Finally, the feature vec-
tor of each contour is classified by a set of SVMs, each
trained to recognize different road-marking types, e.g.
stripes, blocks and arrows.

Figure 5: Illustration of the shape descriptor, which
consists of a set of samples of the measured distances
between origin and border at fixed angular intervals.

Model evaluation: Road markings often oc-
cur in specific patterns, e.g. a pedestrian crossing has
equally-sized rectangles at regular intervals with equal
orientations. These patterns can be modeled to link
the individual markings together into e.g. a crosswalk,
and to reduce false detections. The model evaluates all
detected road markings and grouped detections that
adhere to its adjacency and orientation rules, and dis-
cards detections not satisfying the model. The model
evaluation improves the recognition results compared
to the individual contour classification and pursues the
recognition of high-level elements (i.e. crosswalks).

4.2 Multi-view positioning

Afterwards, the 3D positions of each detection are
retrieved and multiple detections corresponding to the
same marking, are merged. The image positions of
the recognized markings can be converted to relative
positions w.r.t. the capturing locations. Based on the
known capturing locations, the 3D world coordinates of
the markings can be computed. Afterwards, detections
are merged using the Mean Shift Algorithm [12], where
only clusters containing at least 2 detections in closeby
images are accepted.

5 Experiments and results

5.1 Dataset description

Evaluations are conducted on a dataset containing
all street-level panoramic images captured within a
number of geographical regions. Each region contains
both a number of pedestrian crossings, as well as nu-
merous roads without such crossings. The combina-
tion of various geographical regions results in a dataset
with a large number of different traffic situations, vary-
ing from roads in residential areas to main roads and
parking lots of shopping malls. Also, because of its
size, the dataset also involves large variations in in-
cluded weather conditions, as each region is captured
on a different day. The total dataset contains 12, 373
panoramic images (corresponding to 61.8 km of road).
All enclosed pedestrian crossings and road signs de-
noting pedestrian crosswalks are manually annotated
as ground truth by browsing all images and marking
their 3D positions.

5.2 Experimental setup

Experiments are conducted at two different levels.
First, we independently assess the performance of

the road-sign and road-marking systems by comparing
the found signs and markings with the corresponding
ground truth, based on a matching distance of 4 m.
Second, we evaluate the performance of the com-

bined recognition approach, where we focus on consis-
tency checking to retrieve a list of pedestrian crossings
from which either the road markings or signs are not
detected. During this experiment, connected pedes-
trian crossings (as shown in Fig. 6a) are grouped to-
gether, clarifying their lowered number w.r.t the first
experiment. We consider a crossing as consistent when
all connected marking detections have at least 6 stripes
in total (needed to cover both road sides) and the cross-
ing is accompanied by signs that are visible from all
driving directions, which is evaluated based on the sign
orientation angles.
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Approach Correctly det. False det.

Marking recognition 166 94.9% 3
Sign recognition 163 98.8% 5

Table 1: Results of individual recognition.

Approach Correctly det. False det.

Combination 104 98.1% 6
-inconsistent 46 44.2%
signs not ok 37 35.6%
markings not ok 18 17.3%

Table 2: Results of consistency checking.

5.3 Individual recognition results
The recognition results are shown in Table 1. As

follows, both approaches identify the vast majority of
the signs and markings, where most missed markings
are caused by worn out markings, as shown in Fig. 6b.
With respect to processing time, the traffic sign

recognition system takes about 88.5 s per image on
average [3]. The road marking recognition system re-
quires 10 s per image on average. Both systems use
single core implementations using MatLab and C++.

5.4 Combined results and consistency checking

Table 2 shows the combined recognition results of
the road-markings and road-sign detectors for consis-
tency checking. It should be noted that connected
crosswalks are grouped together during this experi-
ment, such that the results cannot be compared with
the previous experiment. Our approach missed only 2
of the pedestrian crossings, which clearly indicates that
safety checking based on the generated database is
both accurate and efficient compared to manual in-
spections of all images. When assessing the consis-
tency of the crossings, which enables specific manual
safety checking of crosswalks with undetected markings
or signs, we have found that over half of the detected
crossings satisfy the set criteria (wide enough cross-
walk to cover a two-way road and signs with correct
orientation angles). Interestingly, we have found that
inconsistencies in signs and markings seem correlated,
i.e. undetectable markings and signs often coincide.
This can be partly explained by aging, as crosswalks
that are placed longer ago are more likely to be worn-
out and have dirty, skewed or damaged signs.

6 Conclusions and future work

This paper has presented an approach for the gen-
eration of traffic signage databases from street-level
panoramic images, based on a combination of road-sign
and road-marking recognition. Such a combination
leads to higher surveying accuracies, enables extrac-
tion of complementary information from both sources,
and allows for consistency checking between markings
and signs. In this paper, we have explored this combi-
nation for the surveying of pedestrian crossings.

(a) (b)

Figure 6: (a): Connected crossing, counted as single
crossing. (b): Worn-out markings.

Experiments have shown that the individual recogni-
tion of markings and signs is very accurate (≥∼ 95%).
The explicit use of combined recognition allows for a
higher level of road signage detection by indicating the
consistency of markings and signs. This paves the way
for a reliable safety indication, and enables specific
checkings of inconsistent crosswalks. In our experi-
ments, more than 50% of the crosswalks are detected
with consistent markings and signs.
Our combined recognition approach for traffic signs

and road markings can be extended to other combina-
tions denoted by both road markings and signs, such
as priority situations and lane configurations.
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