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Abstract

Frequent and more accurate water level measure-
ment will allow for a more efficient distribution of
water, resulting in less water loss. Therefore in this
paper we propose a novel method for accurate water
level detection and measurement applied on images of
staff gauges, retrieved from mobile device camera. In
the first step, we propose fast segmentation of the staff
gauge using a 2-class random forest classifier based on
a feature vector of textons. To obtain bars and num-
bers we apply Gaussian Mixture Model segmentation
followed by optical character recognition based on ran-
dom forest classifier and bar detection using shape mo-
ments. Based on the recognized lines and numbers a
quadratic function for the water level measurement to
obtain metric values is introduced. Finally, we propose
a novel step for the water level line detection. The wa-
ter level function and the detected water line provide
the value of the water level based on the units on the
staff-gauge. The water level can then be uploaded to a
central server to determine if water flow needs to in-
crease or decrease. Testing with a real world images
from Dutch canals show very accurate detection with
many different staff-gauge locations despite complex
challenges of viewpoints variations, low quality images
as well as changing illumination conditions.

1 Introduction

Delivering water for agriculture by means of irriga-
tion canals is very important for feeding the growing
world population. Unfortunately, on average 40% of
water is lost in water transport due to mismanagement
by the human operators. Complete automatic control
of such canals could reduce water losses to 10% and
severely reduce the worlds water problems [7]. Such
system requires accurate readouts of water levels to be
frequently updated to the water management center.

Several studies propose image-based water level
measurement techniques [6], [5]. [6] is based on a mea-
suring water level from a fixed camera using spatial
FIR filters while [5] detects the bending of lines on a
measuring board with diagonal lines. However these
methods have a large disadvantage of being dependent
to fixed camera to be installed at the location or extra
water measuring gauges to be calibrated. In addition
they require constant recalibration of the camera by a
human operator due to changing weather conditions.

To reduce these problems several studies propose to
use raw images sent to management center for further
processing [8], [3]. However they do not deal with un-
certainties of field settings such as lighting changes,
camera movement or condensation on the lens which
have a large impact on image quality and consequently
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Figure 1: Overview of automatic water level detec-
tion algorithm

measurement accuracy. [2] proposes methods for auto-
matic image quality assessment and correction prior to
sending. Nevertheless these methods show high sensi-
tivity to dirt and stains on the gauge requiring constant
maintenance at many locations.

To solve above mentioned problems in our previous
work we have proposed accurate measurements and
control of irrigation canals by using smartphones which
does not require any additional equipment on field, re-
duces human error and allows for keeping logs of cap-
tured images with water level data. In this paper we
propose a novel method for automatic detection of wa-
ter level invariant to changing environment conditions
and state of staff gauge and water. The first step in
our method is to locate the staff gauge in the camera
image. Once this is obtained, we differentiate various
components of the gauge such as the background, the
measurement lines and the associated numerals. Then
the localized gauge image is warped to obtain vertical
alignment of measuring lines, followed by estimating a
mapping between the vertical pixel value and the met-
ric units. This is used along with an accurate detection
of the gauge - water intersection to obtain the water
level in the current image. An overview of the entire
algorithm pipeline is presented in Figure 1.

The rest of the paper is organized as follow. The Sec-
tion 2 explains localization of staff guage. Segmenting
different components of the gauge is detailed in Section
3 and dynamic calibration of the gauge and water level
estimation are discussed in Section 4 and 5. The ex-
perimental results are presented in Section 6 followed
by conclusion and future work in Section 7.

2 Staff gauge localization

Locating the staff gauge in the source image is the
first and critical step in the overall process. The ini-
tial image captured by the user can contain the staff
gauge at any arbitrary position. This combined with
added variations in scale, skew and rotation and illu-
mination changes make the localization a challenging
task. We have tackled this using a texton based ap-
proach on a Lab color space. Textons were introduced
for the texture recognition and have been later coupled
with boosted classifiers for object detection in natural
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Figure 2: Source image and ground truth for train-
ing

Figure 3: Original image and generated segmenta-
tion mask

images [4]. A texton is a higher dimensional represen-
tation of a pixel encoding spatial and chromatic prop-
erties of the local neighborhood. This is achieved by
convolving a filter bank with different channels of the
source image. Here, we have used filter bank consisting
of a Gaussian, Laplacian of Gaussian and derivative of
Gaussian filters of varying σ and kernel size applied
over individual channels of Lab color space. The fil-
ter bank from [4] is used here and it provides with a
texton of 17 dimensions for every pixel. Now, each tex-
ton is associated with a label of gauge/background us-
ing manually obtained ground truths. Sample images
and ground truths used here are shown in the Figure
2. The distribution of the gauge/background pixels in
this 17 dimensional space is learned using a discrimina-
tive classifier. We have used a random forest classifier
[1] which learns from small number of samples using
bagging. This classifier is used because of its ability to
learn a robust non linear model to deal with complex
and multi modal feature distribution while having very
low computational cost which are suitable for our pur-
poses. After training is compelete, in normal operating
conditions a binary mask is obtained by thresholding
the probability of every pixel’s corresponding texton
from the classifier. This results in a reliable localiza-
tion of the gauge from the source image. A sample test
image and its gauge location identification are shown
in the Figure 3. Segmenting different components of
the localized gauge are discussed in the next Section.

3 Gauge components segregation

Having localized the gauge, we process only this part
of the image to segregate the different components such
as the background, the measurement lines and the as-
sociated numerals. We first remove the background
and then split the remaining blobs to lines or numerals
based on shape properties.

3.1 Background removal

Almost all staff-gauges in the Netherlands use a dark
background with light colored lines and numbers. In
order to segment the lines and numbers from the back-
ground we have used a Gaussian mixture modeling
(GMM) method on a gray-scale image. We approxi-
mate the histogram of image intensities as a superpo-
sition of two Gaussian components. The parameters of

Figure 4: Original image, background extracted
mask, warped extracted lines and recognized numbers

these components (μ, σ) are estimated using an EM al-
gorithm. The regions of the image corresponding to the
component with lower mu are considered background
and removed to obtain a mask consisting of only lines
and numbers. Figure 4 shows an example of the ex-
tracted foreground on a staff-gauge.

3.2 Measurment lines identification

The components of the obtained foreground mask
are separated into lines or numbers based on shape
characteristics. The shape of each blob on this mask is
represented using a 7 dimensional Hu moments. The
obtained moments are clustered into two groups based
on their Euclidean distances. The cluster containing
blobs of lines are identified based on the a-priori knowl-
edge of the properties such as uniform shape and orien-
tation. Any blob that deviates from the known proper-
ties of lines on a standard staff-gauge is considered as
belonging to numerals which are recognized and used
in the final estimation of the water level as explained
in the next section. The obtained lines are shown in
the Figure 4.

4 Dynamic calibration and Water level de-
tection

The determined lines are used to warp the image in
order to obtain an accurate water level measurement.
The localized gauge image is warped such that all the
lines are horizontal and equal in size. A perspective
transformation matrix is obtained by using 4 points in
the original image and their required positions in the
transformed image. This is found using the orientation
of lines and change of their horizontal lengths (identi-
fied as a rectangle). Figure 4 shows the results of this
perspective warping.

After this, a custom trained optical character recog-
nition (OCR) is applied to the remaining blobs after
line segmentation. A training character set is created
by manual segmentation and labeling of the numerals
in the training dataset. Each sample is pre processed
by removing excess background and rescaling the im-
age to an 1 : 1 aspect ratio with 40 pixels in width and
height. A feature describing the character is obtained
by vectorizing the processed sample into a binary fea-
ture of length 1600. Again, another random forest clas-
sifier is trained on this data with labels ranging from
0 − 9. Using this trained classifier, at run time each
object in the cluster is preprocessed and recognized as
a specific numeral. The final step is to connect charac-
ters that belong together representing a bigger number.
The numbers are combined using their relative location
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Figure 5: Water sample patch, water probability
mask, water mask and estimated water line

in the image, numbers close to each other are assumed
to belong together and are read from left to right.

The identified numbers are associated with the clos-
est lines and this will be used to obtain a pixel position
to water level mapping. Since each gauge can have a
different measurement range and resolution, a dynamic
calibration of pixel distance to metric measure of the
gauge is performed every time an image is analyzed.
The variation of metric measure with vertical pixel dis-
tance is modeled as a second order polynomial function
with 3 independent variables as in (1)

yα = x2
αa+ xαb+ c (1)

where, yα is the metric measure and xα is the vertical
pixel distance. The parameters a, b, c of the model are
obtained by using a least square solution of 2. This
data matrix is obtained by using 3 pairs of vertical
pixel distance from the top of the warped image and
the recognized numeric values.
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This function modeling not only allows for robustness
against different viewpoints as well as higher precision
of the estimation of water level.

5 Water level detection

Now, the water level in pixels is estimated and con-
verted to the level in metric units of the gauge to ob-
tain the actual water level in the current image. The
intersection of the gauge and the water is accurately
estimated in the following manner.

A similar algorithm to that of staff-gauge detection
and segmentation is used to detect the water intersec-
tion with the staff-gauge. A small patch of the gauge
including some water as seen in Fig. 5 is used to train a
random forest classifier on classes of gauge and water.
Using the same filter-banks used for staff-gauge detec-
tion a 17-dimensional feature vector for each pixel of
the image is generated which is used for training.

The patch of the staff-gauge and water is obtained
by creating a region of interest around the most bottom
line of the staff-gauge. The bottom most line is found
using the previously detected lines and numbers from
the gauge component segregation method. As water
may sometimes reflect the staff-gauge the most bottom
detected line might not always be an actual line on the
staff-gauge. Extending the region of interest about 3
lines above the last detected line and the same area

below the last detected line almost always gives a good
sample patch of gauge and water. Once the patch is
found it is down sampled and a probability map is
generated using the trained random forest classifier.

The obtained map describes the probability of a
pixel belonging to water. Any pixel with a probability
less than 0.3 is classified as staff-gauge and any pixel
with probability greater than 0.7 is classified as water.
Pixels with probability in between 0.3 and 0.7 could be
falsely classified and must be further analyzed. There
arise false classifications due to the presence of dirt on
the gauge or reflections of the gauge on clear water. To
avoid falsely classified pixels, pixels with probabilities
between 0.3 and 0.7 are classified as either water or
staff-gauge based on the weighted average of the prob-
abilities of its 16 neighboring pixel probabilities. A
pixel with a weighted average of its neighbors greater
than 0.5 is classified as water other wise it is considered
to be part of the staff-gauge. Fig. 5 shows the initial
probability mask obtained from the classifier and the
updated mask based on the weighted average of each
pixels neighboring pixels.

The outliers caused by dirty gauges and reflection
are filtered by performing an Euclidean clustering on
the updated mask. The biggest cluster of pixels is con-
sidered to be water any other cluster is considered an
outlier based on the euclidean distance between the
edges of the cluster and the biggest cluster. Once the
water segment is completely defined in the patch the
upper most point in each column that belongs to the
water class is used to fit a water line. As the image was
previously transformed such that the lines on the staff-
gauge are horizontal the detected water line should also
be close to being horizontal. The average of the de-
tected water line points is used as the input into the
water level function as in 1 to obtain the final water
level. Figure 5 shows the detected water line on a staff-
gauges.

6 Experimental setup and results

To test our method we have used real data obtained
from 9 locations in Dutch water canals. A total of 40
testing images are used taken by a smartphone under
varying illumination conditions, from multiple view-
ing angles and containing challenging water conditions
such as reflection and dirt. The tests are preformed on
the three steps used for water level measurement; staff-
gauge segmentation, water level function formulation
and water line detection. Each step of the proposed
water level measurement has been tested separately
such that each test is controlled and is not depended
on the outcome of any of the other tests. The classi-
fiers were trained on forty images taken at several real
world locations and various viewing angles.

6.1 Staff-gauge segmentation results

Staff-gauge segmentation has been tested on 40 ran-
domly selected images from 9 different locations. In
order to determine the accuracy of segmentation, man-
ually segmented masks have been created for compar-
ison, such as those in Figure. 2. The generated seg-
mentation mask from the classifier is compared on a
pixel level to that of the manually segmented mask.
Table 1 shows the average pixel level classification ac-
curacy of the 9 separate locations. As can be seen both
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Location False
Positive

False
Nega-
tive

Precision Recall

1 0.308% 0.776% 98.915% 90.451%
2 0.129% 0.747% 99.124% 95.770%
3 0.0% 1.741% 98.258% 48.429%
4 0.268% 0.124% 99.608% 94.902%
5 0.155% 0.319% 99.526% 94.382%
6 0.442% 0.319% 99.239% 97.53%
7 0.841% 0.098% 99.061% 98.928%
8 0.297% 0.02% 99.682% 99.577%
9 0.435% 0.544% 99.021% 99.009%

Average 0.331% 0.521% 99.159% 90.998%

Table 1: Staff-gauge segmentation results

Figure 6: Water function results

precision and recall are very high and present results
of above 98% which justifies its application in the real
water management system.

6.2 Water level function formulation results

In order to keep the results of water level function
formulation independent of the results of staff-gauge
segmentation, the tests are performed using manually
segmented staff-gauges. Again forty staff-gauges have
been randomly selected from 9 different locations. To
determine the error of the water level function 5 known
measurement points are selected on each of the staff-
gauges and compared to the measurement value ob-
tained by the water level function. The graph in Fig.
6 shows the average error of the water level function
at each location.

The results show very low errors where the only sig-
nificant error is at the location 7. The error is due to
the fact that the staff-gauge at location 7 is quite dirty
making it more difficult to get an accurate read out at
this location.

6.3 Water line detection results

For the final test, forty patches from randomly se-
lected images containing both staff-gauge and water
are used to test the water line detection method. The
error of the water line detection is determined by com-
paring pixel distance between the detected water line
to expert labeled ground truth. Fig. 7 shows the av-
erage error at 9 different locations.

Location 4 has the most significant error. At loca-
tion 4 the water was very clear making it difficult to
detect the actual water line as most of the water has
similar features to that of the staff-gauge.

Figure 7: Water line detection results

7 Conclusion

Automatic water management can save millions of
liters of water loss and prevent water shortage, how-
ever this requires fast and accurate measurement of
water level. Therefore, in this paper we have intro-
duced novel method for water level measurement that
can be implemented directly on mobile devices, signif-
icantly simplifying usability of such solution. To ob-
tain automatic water level detection, we at first per-
formed fast segmentation of the staff gauge followed by
fast recognition of bars and numbers to read out rel-
evant information. To obtain readouts in metric val-
ues we proposed water line quadratic function and the
method for water line detection. To test our solution
we obtained real data from different irrigation canals
in Netherlands, using a mobile device to capture a pic-
ture of a location and staff-gauge. Obtained results
show very high precision of detection of above 97% de-
spite changing environmental conditions and dirt on
the gauge and water. With minor changes the meth-
ods could be applied to measure water levels on staff-
gauges around the world.
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