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Abstract 

This study describes a reconstruction method for 
compressive sensing using collaborative sparsity among 
multi-frame images and color channels. The proposed 
method reduces the artifact for compressive sensing and 
obtains better image quality. Experimental results reveal 
that the proposed method reconstructs 6.1 dB higher 
quality images than the conventional one for complex 
texture at occlusion boundaries. 

1. Introduction 

Compressive sensing [1], which consists of much 
more efficient sampling than Nyquist-Shannon theorem 
and perfect reconstruction in theory, is promising to 
achieve very low power consumption digital cameras [2] 
and high-resolution light field camera [3]. 

Compressive sensing utilizes many kinds of pri-
or-information, such as total variation [4, 5], linear 
transformation [6], and non-local similarity, to recon-
struct high quality images. As one of the most effective 
prior among them, Zhang et al. [7] have proposed a re-
construction method using non-local similarity, which is 
called collaborative sparsity. It is based on Block 
Matching 3D Filtering (BM3D) process [8] known as 
image denoising. It enforces both local two-dimensional 
sparsity and non-local three-dimensional sparsity simul-
taneously, so that this method enables a natural image to 
be highly sparse in an adaptive hybrid space-transform 
domain. A drawback of this method, however, is the fact 
that the image quality for complex texture at occlusion 
boundaries tends to be degraded in the case of moving 
camera or multi-view cameras. 

To overcome this issue, we apply new sparsity: col-
laborative sparsity among multi-frame images and color 
channels. The proposed method achieves higher degree of 
sparsity and obtains better image quality at occlusion 
boundaries. Experimental results reveal that the proposed 
method reconstructs 6.1 dB higher quality images than the 
conventional one in such the regions. 

2. Compressive Sensing Reconstruction 
Using Collaborative Sparsity 

In this section, the conventional reconstruction using 
collaborative sparsity is described. 

2.1. Formulation of compressive sensing recon-
struction using collaborative sparsity 

We define the ideal solution of reconstruction images 
of size N as X. Given M (< N) linear measurements vector 
Y, the reconstruction of X from Y is formulated as the 
following equation: 

AXY ,                       (1) 
where A represents the random sampling matrix.  

Evidently, there are infinitely many possible X because 
rank of A < N. To obtain optimal images, compressive 
sensing introduces as prior-information that natural im-
ages have high degree of sparsity in general. Zhang et al. 
[7] have applied collaborative sparsity and formulated as 
the following constrained optimization problem: 

AXYX xX
tosubjectmin

11L2D ,  (2) 

where L2D  denotes vertical and horizontal finite dif-
ference operator, 

1x is nonlocal three-dimensional 

sparsity in transform domain DN 3 , 
1
 is represent 1l  

norm and  denotes a regularization parameter. 
The former type of sparsity describes the smoothness, 

which is local two-dimensional sparsity in space domain.  
The latter one denotes non-local three-dimensional 

sparsity in transform domain, which is the self-similarity 
of natural images, retaining the sharpness and edges ef-
fectively. This is defined as follows: 

1. Divide the image X with size N into Nb overlapped 
blocks of size 11 NN  and each block is denoted by kx , 
i.e., k =1, 2, ... , Nb. 

2. Define 
kxS the set including the N2 best matching 

blocks to kx in the SS NN searching window, that is, 

221 ,,, Nxxx kkkk
SSSxS . 

3. For every
kxS , a group is formed by stacking the 

blocks belonging to 
kxS into a three-dimensional array, 

which is denoted by 
kxZ . 

4. Denote D3T the operator of a three-dimensional 
transform, and 

k

D
xZT3  the transform coefficients for 

kxZ in domain DN 3 . Let x be the column vector with 
size 2b11 NNNNK  built from all the 

k

D
xZT3   

arranged in lexicographic order. 
From this definition, it is obvious that if the matching 

blocks are more similar, the reconstruction quality be-
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comes higher. Therefore, this method is particularly ef-
fective for video sequence (multi-frame) and light field 
(multi-view) images. 

2.2. Drawback of the conventional method 
This conventional reconstruction is assumed that every 

image piece has many matching blocks enough. However, 
in the case of moving camera or multi-view cameras, this 
assumption is sometimes broken and results are degraded 
at occlusion boundaries. 

3. Reconstruction Using Collaborative 
Sparsity among Color Channels 

We introduce collaborative sparsity among mul-
ti-frame images and color channels to overcome above 
mentioned issue. The proposed method finds more simi-
lar blocks than the conventional one and obtains better 
image quality for complex texture at occlusion bounda-
ries. Additionally, to improve the reconstruction quality, 
our method captures multi-frame images with different 
random sampling by frame by frame.  

In this section, we present our proposed method and 
its solution. 

3.1. Prior-information based on color correlation 
As mentioned above, collaborative sparsity is effective 

for multi-frame and multi-view images. Additionally, 
natural image has strong color correlation [9].  Then we 
introduce collaborative sparsity among multi-frame, 
multi-view camera and color channel images. We sum-
marize the similarity for these images in Table 1. For 
complex texture, collaborative sparsity among mul-
ti-frame images is efficient. For complex texture at 
occlusion boundaries, however, image blocks are not 
similar among multi-view camera images. In contrast, 
they are very similar among color channel images as long 
as the color correlation is high enough. Our method 
searches matching blocks not only in image plane but also 
among multi-frame, multi-view and color channel images. 
Then the proposed method finds more similar matching 
blocks than the conventional one. As a result, better image 
quality is obtained at occlusion boundaries. 

3.2. Formulation of reconstruction using collab-
orative sparsity among color channels 

The proposed method is formulated as minimization of 
the following cost function: 

1TV
2

2
TV

2
1min xX

XYAX ,     (3) 

where TV  and  denote regularization parameters. 
This cost function consists of three terms: data-fidelity 

term, total variation term and non-local sparsity term. 
The first one is data-fidelity term, which takes the dif-

ference random sampling of reconstruction images X and 
measurements vector Y. 

The second one is total variation term, which is based 
on local two-dimensional sparsity of X [4]. 

The third one is non-local sparsity term, which is ap-
plied similar term in (2) to inter-color channels. 

Table 1. Similarity among images. 

 Simple
Texture

Complex 
Texture 

Occlusion 
Boundary 

Intra-Color 
Channel    

Multi-Frame 
(Multi-View)    

Among Color 
Channels  

 
( As long as the color correlation 

 is high enough. ) 

3.3. Solution of the proposed method 
Note that the cost function (3) is essentially 

non-convex and quite difficult to solve directly due to 
non-differentiability and non-linearity of non-local 
three-dimensional sparsity term. To solve it efficiently, we 
introduce Split Augmented Lagrangian Shrinkage Algo-
rithm (SALSA) [10]. 

Using variable splitting, SALSA reformulates (3) as a 
constrained problem (4) for variables U, V: 

  0BVGUV
VU

tosubjectmin
,

g ,       (4) 
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By introducing new variable D, SALSA works as Table 
2, where  is a penalty parameter, c  is the parameter 
that depends on its convergence, and ST(x,b) stands for 
soft thresholding operator as follows: 

 0,min)(),(ST bxxsignbx .            (8) 

4. Experimental Results 

In this section, the experimental results for both video 
sequences and multi-view images are presented to evalu-
ate the performance of the proposed method. 

For all experiments, we use spatiotemporal random 
sampling whose elements are 0 or 1, which is reasonable 
for the fabrication of the image sensor. As is known, 
Gaussian random sampling is efficient to reconstruct high 
quality images. However, the circuit is complicated. 

The proposed method compared with two reconstruc-
tion methods, i.e., total variation method [4], which 
doesn't utilize any non-local similarity, and reconstruc-
tion with collaborative sparsity among multi-frame 
images and intra-color channel, which is called mul-
ti-frame method. For all simulation, the stopping 
criterion at Table 2 is as following: 

,250or,
2

2

)()( kTh_mkk BVGU       (9) 

where Th_m denotes the convergence parameter.  
At first, we evaluated the results for video sequences. 

We used four video sequences with 16 frames provided by 
the Institute of Image Information and Television Engi- 
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Table 2. Algorithm for the proposed method. 

 
neers as shown in Fig. 1. Figure 2 plots PSNR of all re-
construction images versus compression ratio (presented 
as the ratio of number of measurements to total pixels) 
from 0.125 to 0.500 for the three different approaches. 
Figure 3 depicts the reconstruction images in the rectan-
gular region in Fig. 1. The compression ratio is 0.125. 
These figures show that the proposed method recon-
structs complex texture more precisely than conventional 
methods although its improvement for whole images is 
small. 

Next, we evaluated the results for multi-view images 
which have complex texture at occlusion boundaries. We 
used nine view-point images provided by Tsukuba Uni-
versity [11]. The compression ratio is 0.25. PSNR of all 
reconstruction sequences versus camera position is plot-
ted in Fig. 4. This figure presents that the proposed 
method is 1.8 dB better in average than the conventional 
one. The reconstruction images for these three methods 
are presented in Fig. 5 and the right column of Fig. 5 
depicts the enlarged results for complex texture at occlu-
sion boundaries. Figure 5 (c) shows the multi-frame 
method cannot reconstruct the texture in the background 
near occlusion boundaries. In contrast, the proposed 
method preserves the texture as shown in Fig. 5 (d). The 
computational cost of the proposed method becomes 
three times because it searches matching blocks for three 
times wider than the multi-frame method. 

 
Fig. 1.  Experimental test images  

for video sequences. 

 
Fig. 2.  PSNR vs. compression ratio. 

 

      
                               PSNR = 22.6 [dB]. 

(a) Experimental test image.    (b) Total variation. 

      
PSNR = 25.4 [dB].        PSNR = 27.2 [dB]. 

(c) Multi-frame method. (d) The proposed method. 
Fig. 3.  Reconstruction images for video sequence 

 (magnifying the rectangular region in Fig. 1.) 
 
These experimental results present that the proposed 

method reconstructs 6.1 dB higher quality images than the 
conventional one. 

These results reveal that the proposed method recon-
structs higher quality images than the conventional one 
for complex texture at occlusion boundaries. 

5. Future work 

To realize our method, we are fabricating a prototype 
image sensor for spatiotemporal random sampling. The 
prototype chip microphotograph is shown in Fig. 6. 

In our sensor, all pixels have cross bar switches and 
the pixel array is partitioned into blocks. Spatial sampling 
is performed on each block using the same 4x4 encoding 
matrix which controls cross bar switches. Signal adder 
sums up the pixel values corresponding to the non-zero 
elements of the encoding matrix. By varying the encoding 
matrix for each frame, our image sensor performs spati-
otemporal random sampling whose elements are 0 or 1. 

Formulation: 
 ,

2
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is the column vector built from all the 
       

)1(r
3

k
D ZT  arranged in lexicographic order.

    DN 3  is the inverse operator of DN 3 . 
  .)1()1()()1( kkkk BVGUDD  
  Update iteration: k  k+1. 
 Until some stopping criterion is satisfied. 
   X =U, return (X). 
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Fig. 4.  Results of PSNR vs. camera position. 

 
(a) Experimental test image (2, 2). 

 
                   PSNR = 23.7 [dB]. 

(b) Reconstruction image (2, 2) of total variation. 

 
                  PSNR = 26.0 [dB]. 

(c) Reconstruction image (2, 2) of multi-frame 
method. 

 
                   PSNR = 32.1 [dB]. 
(d) Reconstruction image (2, 2) of the pro-

posed method. 
Fig. 5.  Reconstruction images for multi-view images. 

6. Conclusion 

In this study, we proposed the new reconstruction 
method for compressive sensing. We introduced collab-
orative sparsity among multi-frame images and color 
channels. Since natural images have color correlation in 
general, the proposed method leads higher degree of 
sparsity. As a result, better image quality is achieved for 
complex texture at occlusion boundaries. Experimental 
results reveal that the proposed method reconstructs 6.1 
dB higher quality images than the conventional method in 
such the region. 

 
Fig. 6.  Chip micrograph of image sensor. 

 
For future work, we will evaluate on real data set 

which is captured by our prototype image sensor and 
speed up our algorithm to using parallel processing. 
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