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Abstract

This paper proposes a new approach to model arm
pose configuration from color images based on the
learned features and arm part structure constraints. It
aims to model human arm pose without assuming of
a particular clothing style, action category and back-
ground. It uses an energy model that describes the de-
pendence relationships among arm joints and parts. A
joint convolutional neural network (J-CNN) based on
multi-scaled images is then developed for feature ex-
traction of joints and parts, where the local rigidity of
arm part is used to constrain the occurrence between
the joints and arm parts in a dynamic programming
inference. The experimental results show better perfor-
mance than alternative approaches using hand-crafted
features for arm pose modeling.

1 Introduction

The objective of this study is to automatically iden-
tify the positioning of human body parts or joints, us-
ing real life images or videos of people as input. Gen-
erally, the low-level features are important for human
arm pose modeling, as they capture the invariant prop-
erties of the joints or arm parts. The high-level pose
configuration, on the other hand, can restrict the solu-
tion space, as inferences that violate the human phys-
ical structure can be eliminated. To solve the esti-
mation problem, one may apply probabilistic models
and compute pose configuration based on the visual
likelihood and pose prior [1]; alternatively, one may
convert it to a classification problem to learn the rela-
tionship between the low-level features and high-level
poses [2, 3]. In this paper, we focus on the learned fea-
tures of arm joints and the local rigidity of arm parts
using convolutional neural network, which is capable
of learning features from images for various objectives.
Most studies on human pose modeling involve still

images, and 3D arm pose models are often projected
to 2D images for silhouette matching. For instance,
Moeslund et al. [4] use a two parameters based screw-
axis 3D arm model for exhaustive silhouette match-
ing. They can reduce the solution space at the ex-
pense of depth errors as a result. For simple clothing
styles and plain backgrounds, background estimation
and skin color detection are used for arm detection [5],
followed by a silhouette fitting with a projected 3D
sticks-figure model. The pictorial structure proposed
by Fishchler and Elschlager [6] is also widely used in
arm pose modeling; among its extensions, Felzenszwalb
and Huttenlocher [1] incorporate a Bayesian model to
pictorial structure for deformable objects recognition,
including arm parts detection. The mixture of parts
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Figure 1. The graphical model of an arm pose.

method proposed by Yang and Ramanan [2] uses his-
togram of gradient (HOG) features of multiple points
for each body part to increase the detection ability.
Structured max-margin models [7] are also used for
parameters learning, but the performance is limited
by the hand-crafted feature HOG, as it is hard to cap-
ture the properties of body parts but their gradients.
This structured max-margin model and HOG feature
are also used in a multi-modal, decomposable model
for articulated human pose estimation by Sapp and
Taskar [3], combining global and local pose cues to im-
prove the estimation performance.

2 Energy Model

2.1 Graphical model of both arms

Assume we have an arm model with J joints, and
the location of the jth joint is written as Lj . Let
Γ = {L1, . . . ,LJ} be the joint location variable for a
particular arm pose configuration involving all J joints.
As shown in Figure 1, each joint or arm part is attached
a relevant potential, where αi and βij evaluate the oc-
currences of the ith joint and the arm part with the
ith and jth joints, respectively. The location Lij of the
arm part contains its two joints’ location Li and Lj .
Note that a smaller potential means a higher probabil-
ity of occurrence of the joint or arm part.

2.2 Energy function

Given an image I, we can derive its energy for each
possible arm pose configuration Γ by summing all rel-
evant potentials, i.e.,

E(I,Γ) =

J∑
i=1

αi(I,Li) +
∑
ij∈ε

βij(I,Lij), (1)

where J = 6 is the size of all arm joints, and ε =
{{1, 2}, {2, 3}, {4, 5}, {5, 6}} is the set of joint index
pair for all arm parts. We aim to minimize E over all
possible Γ, such that

Γ̄ = argmin
Γ

E(I,Γ) (2)
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Figure 2. Multi-scale sampling for positive in-
stance x5 and negative instance ¬x5 of the right
elbow.

gives a configuration with the minimum energy. The
potentials of the joints and arm parts can be defined
as

αi(I,Li) = ‖fαi
(xi)‖2 (3)

βij(I,Lij) = ‖fβij
(xij)‖2, (4)

where the mapping functions fαi
and fβij

perform fea-
ture extraction and dimensionality reduction from the
raw pixels of the image patches, respectively. xi is the
instance of the ith joint at location Li, while xij is
the instance of the arm part located between Li and
Lj . αi(xi) and βij(xij) are the �2 norm of extracted
features of instances for joints and arm parts in the
feature space.

3 Features Learning

There are positive and negative instances in a train-
ing procedure. Below, we describe how we can map
the output of the positive instances to an area close to
the origin of the feature space, and the output of the
negative instances to be far from the origin.

3.1 Positive and negative instances

For a unary potential αi associated with the ith joint,
its positive instance xi is an image patch centering at
position Li, while its negative instance ¬xi is any patch
not centering at Li. As for βij , which is associated with
the ith and jth joints, the local rigidity of arm parts
suggests that its positive instance xij is a set of image
patches centering equidistantly from the two joints lo-
cations Li and Lj , and its negative instance ¬xij is
equidistant from two points that at least one of them
is different from Li or Lj . Here, we use the middle
point of each arm part as the center of the positive
arm part instances. Furthermore, to capture more de-
tails of a specific joint and arm part, we make use of
multiple scales of the images to sample the positive and
negative instances. Figure 2 illustrates an example of
sampling the positive and negative instances for the
right elbow using a multi-scaled image.

3.2 Structure of J-CNN

As a powerful tool, convolutional neural network
(CNN) [12] is widely used in object detection and
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Figure 3. A basic structure of ConvNet for arm
pose modeling with multi-scale input patches
sharing parameters.

recognition, location identification and feature repre-
sentation in computer vision. In this work, CNN is
also used for feature learning as the functions fαi

(x)
and fβij

(x) in Eq.(3) and (4). Since they have the
same network structure, we denote them as fαi

(x) =
Conv(x, θαi

) and fβij
(x) = Conv(x, θβij

). This func-
tion Conv is implemented by a convolutional network
(ConvNet) [8] structure. Since there is a set of CNNs
to be trained on training dataset in a supervised man-
ner, we propose a method to train them jointly. All the
ConvNet units of all joints and arm parts are assembled
together and trained jointly, so we call it joint CNN (J-
CNN). Its overall cost summarizes all of individual er-
ror of each potential. J-CNN can take the advantage of
computing capability of the current graphic processing
unit (GPU) to train the CNNs in parallel, and can op-
timize the all potentials jointly at each iteration. Each
individual CNN is independent, but just their param-
eters are trained jointly. As illustrated in Figure 3, an
individual ConvNet unit contains three convolutional
layers and three max-pooling layers alternatively, as
well as two multilayer perceptrons (MLP) layers [8].
For an input instance with multi-scale patches with size
90× 90, firstly the patches of a joint or arm part use a
stride 2 to reduce input size and subsequently share the
parameters of convolutional and max-pooling layers to
derive their output. Then the outputs are flatten and
assembled as the input of MLP layers to obtain the
feature vector.

3.3 Supervised parameters training

3.3.1 Loss functions

We maintain a margin in the feature space to ensure
that positive samples are close to the feature space ori-
gin, and the distances between negative samples and
the origin are larger than a certain threshold. In order
to satisfy the above criteria, the loss function based on
the �2 norm is adopted for the J-CNN training, which
was originally proposed by Hadsell et al. [9] for dimen-
sionality reduction. The loss functions of potential αi

in Eq.(3) and potential βij in Eq.(4) are

Lαi
(I,Li) =

1

2
{αi(xi)

2 +max(0, τi − αi(¬xi))
2},

Lβij
(I,Lij) =

1

2
{βij(xij)

2 +max(0, τij − βij(¬xij))
2}
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where αi and βij are the potentials of joints and arm
parts defined in Eq.(3) and (4), and τi and τij are
their corresponding margins. So, for an image I and
its possible arm pose configuration Γ, the overall loss
function of the J-CNN is a summation of the individual
loss functions of the all joints and arm parts.

3.3.2 Mini-batching

In order to learn the parameters of J-CNN effi-
ciently, we use the mini-batch stochastic gradient de-
scent (SGD) method [10]. Mini-batch SGD incremen-
tally updates the parameters performed on an average
of gradients with respect to a batch of training instance
rather than a single instance at each time. It can speed
up the parameter optimization, since the computation
of each gradient in a mini-batch is parallel and suit-
able for vectorization. The computed gradient at each
iteration uses more training examples, so it also makes
a smoother convergence.
However, in this paper, the mini-batch approach is

used differently from its original version, where there
are two parts in the overall loss function originally as
described in Hadsell et al. [9]. At each iteration, firstly
M images and the related joint annotations are ran-
domly sampled as (I,Γ) from training dataset. Then
mini-batch instances are generated for all joints and
arm parts. They contain the positive and negative in-
stances of the ith arm joint, which can be written as

xi = {x
(1)
i . . . x

(M)
i } and ¬xi = {¬x

(1)
i . . .¬x

(M)
i }, re-

spectively. Then the mini-batch instance of the joint
for the current iteration is {xi,¬xi}. Similarly, the
mini-batch instance of arm part is {xij ,¬xij}.
The overall loss function L(I,Γ) of current mini-

batch contains two parts. One part, related to the
positive instances, is defined as

L+(I,Γ) =
1

M

M∑
m=1

{ J∑
i=1

αi(x
(m)
i ) +

∑
ij∈ε

βij(x
(m)
i )

}
.

Another part related to the negative instances is

L−(I,Γ) =

M∑
m=1

{ J∑
i=1

1

Ni

max(0, τi − αi(¬x
(m)
i ))2

+
∑
ij∈ε

1

Nij

max(0, τij − αij(¬x
(m)
ij ))2

}
,

where Ni is the size of the negative instance in the cur-

rent ¬xi satisfying τi − αi(¬x
(m)
i ) > 0, and Ni ≤ M

generally. Nij of arm part also satisfy the correspond-
ing restriction. Ni and Nij make that training focus
on the negative instances which are mapped within the
margin of the feature space.
The overall loss of the current mini-batch instances

is as the objective function for parameters training:

L(I,Γ) =
1

2

{
L+(I,Γ) + L−(I,Γ)

}
. (5)

3.3.3 Learning algorithm

Algorithm 1 summarizes the procedure of training
for this J-CNN.

Algorithm 1 training algorithm for parameters of J-
CNN.
Input: {(I,Γ)}: training dataset; θ: randomly initial-

ized parameters of all CNN; ηθ(t): learning rates
of each CNN; τ : their corresponding margins; M :
mini-batch size;

1: initial iteration counter t = 0;
2: repeat
3: t := t+ 1;
4: randomly sample the images I for mini-batch

and the negative joints location ¬Γ based on the
annotated joints location Γ of I;

5: prepare the positive mini-batch instances x and
its negative mini-batch instances ¬x as of all joints
and arm parts;

6: derive their features f(x) = Conv(x, θ) and
f(¬x) = Conv(¬x, θ);

7: compute the overall loss function L(I,Γ);
8: calculate gradients of each potential:

9: ∇θ = ∂L(I,Γ)
∂θ

10: update θ := θ − ηθ(t) · ∇θ;
11: until converge
Output: the learned parameters θ of all ConvNet

4 Inference

A test image contains the upper human body part
and two arms generally. After constructing test in-
stances in a pixel-by-pixel manner on its multi-scale
images, its energy maps of the joints and arm parts
are generated by the learned J-CNN. Then, there are
two methods to infer arm joints Γ̄ in Eq.(2):

1. minimizes the overall energy solely based on the
generated energy maps of arm joints;

2. minimizes the overall energy by dynamic program-
ming with local rigidity constraints based on all
generated energy maps of joints and arm parts.

5 Experiment

The multi-scale image patches sizes used are 90× 90,
126 × 126, and 162 × 162. The individual structure
and setting of the J-CNN is shown in Figure 3. Theano
and Pylearn2 are used on a CUDA Tesla K40 GPU
for training. This GPU with 12GB memory makes it
possible to train the J-CNN of all potentials jointly.
Subsequently, we tested the proposed method on the
FLIC [3] dataset which contains people with arbitrary
clothing and action. The evaluation criterion for test-
ing is Percent of Detected Joints (PDJ) as proposed by
[3]. PDJ curve illustrates the estimation performance
within a certain range of ratios. The sizes of training
and testing samples are 17130 and 1016, respectively.
Figure 5 is an example of combining an input im-

age and the generated energy map of each joint and
arm part together. The area of inner white circle is
recognized as correct [3] and the cyan point is the es-
timate. Figure 5(a) depicts the result of independent
minimization of each arm joint and middle arm part
without arm structure constraints. Although the main
blue part (with low energy) is located inside the white
circle, the estimated points without arm structure con-
straints may not. Figure 5(b) depicts the result of us-
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Figure 4. The PDJ curves of the proposed methods and other methods for elbow and wrist.

elbowshoulder wristmid upper arm mid forearm

elbowshoulder wristmid upper arm mid forearm

(a) Modeling results only using minimal energy

(b) Modeling results using energy and human arm structure constraints

Figure 5. A modeling example based on minimal
energy and human arm structure constraints.

ing the local rigidity constraints for the overall energy
minimization, i.e., the point of one arm part is located
in the middle of its two end joints. The estimation is
visually more accurate. Figure 4 shows the PDJ curves
of our proposed method with rigidity constraints and
other methods e.g. pose machine [11], MODEC [3] and
mixture of parts [2]. It has a noticeable improvement
for elbow estimation and has better performance on
wrist when the PDJ ratio is small.

6 Conclusions

This work proposes a method to learn the features
of both joints and arm parts by the J-CNN. It further
incorporates the local rigidity property of arm part for
arm pose inference. Experiment on FLIC shows a bet-
ter performance than the hand-crafted feature based
methods. In the future, the energy model can be en-
hanced by the pairwise potentials between joints of
each arm part to improve its modeling ability.
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