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Abstract

We propose a novel kinematic prior for 3D human
pose tracking that allows predicting the position in sub-
sequent frames given the current position. We first de-
fine a Riemannian manifold that models the pose and
extend it with its Lie algebra to also be able to represent
the kinematics. We then learn a joint Gaussian mix-
ture model of both the human pose and the kinematics
on this manifold. Finally by conditioning the kinemat-
ics on the pose we are able to obtain a distribution of
poses for subsequent frames that which can be used as
a reliable prior in 3D human pose tracking. Our model
scales well to large amounts of data and can be sampled
at over 100,000 samples/second. We show it outper-
forms the widely used Gaussian diffusion model on the
challenging Human3.6M dataset.

1 Introduction

Tracking humans in videos is an area of computer
vision that has been seeing a lot of research recently.
This is due to the appearance of cheap depth cameras
that have allowed the creation of many new databases
with 3D human pose for tasks such as 3D human pose
estimation itself or action recognition in which 3D hu-
man pose estimation becomes a simple feature. The
scope and size of these new datasets require develop-
ment of new tools that can scale well for these tasks.
In this work we propose modelling 3D human pose

and kinematics in a single Riemannian manifold which
is able to fully capture individual-independent pose
and motion efficiently. We do this by first defining
a manifold on the joint angles for the pose and extend-
ing the manifold with its own Lie algebra. We then
learn a joint model using a recently proposed unsuper-
vised clustering method for data on known Riemannian
manifolds [13]. The mixture can then be conditioned
on a given pose to obtain a distribution of velocities
for that pose which, as we show, can be used as a reli-
able prior for 3D human pose tracking. An example is
shown in Fig. 1.
The most simple traditionally used kinematic prior

has been Gaussian diffusion [2, 3, 4, 10, 16]. This con-
sists in simply searching in a small area defined by a
Gaussian from the previous pose, i.e., xt = xt−1 + ε,
where xt would be the pose at time t and ε would
be a Gaussian with 0 mean and diagonal covariance.
This prior is considered to be action independent as
it is a hyperparameter not tuned for a specific action.
While this approach has proven to be fairly effective,
by learning stronger motion models much better and
more efficient algorithms can been obtained. More ef-
ficient algorithms allow achieving both higher perfor-
mance as well as being much faster due to avoiding the
need of thoroughly sampling the solution space.
A large number of approaches have been using the

family of Gaussian Process models for learning mo-
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Figure 1. Example of our motion prior. We show
100 samples of predictions of our model from a
particular pose. For visualization purposes the
samples are multiplied by 3. We additionally
show the samples for some of the joints with their
associated log-likelihood, where the ground truth
is shown with a black diamond.

tion based on latent spaces (GPLVM) [7]. One of
the most well known approaches is the Gaussian Pro-
cess Dynamic Model (GPDM) proposed by Wang et
al. [18, 19, 20]. Hierarchical variants (hGPLVM) have
also been used in a tracking by detection approach [1].
However, Gaussian Processes do not scale well to large
datasets due to their O(n3) complexity for prediction.
Sparse approximations do exist [9], but in general do
not perform as well. In contrast our algorithm has a
O(1) complexity for sampling.

There have been other approaches such as learn-
ing Conditional Restricted Boltzmann Machines
(CRBM) [17]. However, these methods have a very
complex learning procedure that makes use of several
approximations and thus it is not easy to train good
models. Li et al. [8] proposed the Globally Coordinated
Mixture of Factor Analyzers (GCMFA) model which is
similar to the GPLVM ones in the sense it is perform-
ing a strong non-linear dimensionality reduction. Yet,
as GPLVM it does not scale well to large datasets such
as the ones we consider in this work.
We would like to point out that none of the afore-

mentioned approaches are consistent with the mani-
fold of human motion. Some of them use directly the
3D points of the joints while others use angles. In the
case of considering 3D points the limb length may vary
during the tracking, which is neither realistic nor de-
sirable. In the case of angle representations, they have
an inherent periodicity and thus are not a vector space
even though they are usually treated as such. Two
nearby angles may have very different values, e.g., 0
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Table 1. Comparison of different pose priors in
the literature for tracking. For complexity we
take into account the number of hyperparameters
and the difficulty of learning the model. Models
are considered to scale if they can handle well
large amounts of data (∼100k samples) and to be
consistent if they use geodesic distances instead
of other metrics.

Prior Complexity Scales Consistent
Gaussian diff. Low Yes No
GPLVM [7] Low No No
GPDM [19] Medium No No
hGPLVM [1] Medium No No
CRBM [17] High Yes No
GCMFA [8] High No No

GFMM (Ours) Low Yes Yes

and 2π. In this case the distance using the angular
value would be 2π while the true geodesic distance is
0. Our approach can handle both these limitations.
We show an overview of different models in Table 1.

We can see that our model scales well while being con-
sistent with the manifold, and has low complexity, i.e.,
it just considers a single hyperparameter and can be
easily learnt using an Expectation-Maximization algo-
rithm. It is worth noting here that our model is also the
fastest of them for sampling (it is O(1)).Our Matlab
implementation allows obtaining over 100,000 samples
per second.

2 Kinematic Prior

We will now describe the way we use the manifold
to learn a model which can then be used as a strong
kinematic prior for tracking.

2.1 Joint Pose and Kinematic Manifold

We model 3D human pose using the SO(2)n man-
ifold [13], where n is the number of joints. This rep-
resentation consists of modeling each joint as a unit
sphere in which we have only two rotational degrees of
freedom. By not taking into account the limb lengths
(distance between two neighboring joints) we obtain an
individual-agnostic representation. The natural metric
for comparing poses is the geodesic distance, i.e., the
shortest distance between two points on that manifold.
Note the fact angles periodicity has no effect on this
metric: 0 and 2π have a distance of 0.
The tangent plane to SO(2)n is its Lie algebra

so(2)n. The tangent plane and consequently the Lie
algebra is local to a specific point, and in our case this
point corresponds to a particular pose. Given two con-
secutive poses x1 and x2 at a constant framerate, we
can compute the velocity v12 between x2 and x1 on the
Lie algebra using the logarithm map at x1 as

v12 = logx1
(x2), x1, x2 ∈ SO(2)n, v12 ∈ so(2)n

where ‖v12‖ is the geodesic distance between both
points. Please see Fig. 2 for a visual representation.
The joint manifold for both pose and kinematics will

therefore become SO(2)n× so(2)n. In order to be able
to perform clustering we have to define both the ex-
ponential map and logarithm map for the manifold.
In this case the pose and kinematic submanifolds can
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Figure 2. Visualization of the velocity. Velocities
correspond to points on the tangent space at x1.
Given a consecutive point x2, the velocity is the
curve going from x1 to x2 which is equivalent to a
straight line in the tangent space. The modulus
of v12 on the tangent space corresponds to the
geodesic distance. The conditional distribution
p(v|x, θ) is also defined on this tangent space.

be handled independently. For the pose manifold re-
fer to [13]. The kinematic manifold is defined already
on the tangent space and therefore Euclidean metrics
can be directly used (remember that geodesic and Eu-
clidean distances are the same in this case). Therefore
we can define the maps as

logv1(v2) = v2 − v1 and expv1(v2) = v2 + v1

This will ensure that the mean of the data on the tan-
gent space at the geodesic mean will be 0.

2.2 Probabilistic Model

With data on a known manifold we can use the pub-
licly available algorithm of [13] to perform unsuper-
vised clustering while taking into account the under-
lying manifold structure. By using the proposed pose
and kinematic manifold we are effectively learning the
joint probability

p(x, v|θ) =
K∑

k=1

αkp(x, v|θk) =
K∑

k=1

Nμk
(0,Γk)

where θ = (μ,Γ) and α are the parameters of the model
and K is the number of clusters. Each p(x, v|θk) cor-
responds to a cluster on a different tangent plane cen-
tered on μk. In particular, we model each cluster as
a Gaussian with zero mean and concentration matrix
Γk. Note that while the mean is zero, the cluster is
centered on a tangent space which effectively makes
the point μk the mean of the Gaussian.
The model parameters are learnt by a variant of

the Expectation-Maximization (EM) algorithm with a
MinimumMessage Length (MML) criterion that is also
able to select the number of clustersK. This is done by
initializing the number of clusters to a large value and
then proceeding to run the EM algorithm until con-
vergence. Afterwards the weakest cluster is eliminated
and the EM algorithm is repeated. At any point of the
optimization, clusters that are not well supported by
the data can be eliminated. Finally, the model with the
lowest overall energy (including the MML criterion) is
chosen. By doing this the method is able to find a good
balance between complexity and expressiveness.
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2.3 Conditional Distribution

Even though we estimate the joint model, we are in-
terested in computing the conditional probability dis-
tribution

p(v|x, θ) = p(x, v|θ)
p(x|θx) =

∑K
k=1 αkp(x|θk,x)p(v|x, θk)∑K

k=1 αkp(x|θk,x)
.

Observe that this is indeed a new mixture model
p(v|x, θ) = ∑K

k=1 πkp(v|x, θk), where the weights have
changed to

πk =
αkp(x|θk,x)∑K
j=1 αjp(x|θj,x)

.

It is important to note that while the Gaussians were
originally centered at 0, that is no longer necessarily
the case. In general, for p(v|x, θk) = Nμv (μv|x,Γv|x)

where Γk =

[
Γk,x Γk,vx

Γk,vx Γk,v

]
. We can compute these

new distributions as

p(v|x, θk) = Nμv (Γk,vxΓ
−1
k,x logμk,x

(xx),

Γk,v − Γk,vxΓ
−1
k,xΓk,vx) .

Computing these conditional probability models is
done in closed form and hence, very efficiently.
The model can then be run in two different ways:

pure generative fashion to sample hypotheses with
complexity O(1); or in a discriminative manner in
which the log-likelihood of a sample is computed with
complexity O(K). That is, we can either generate
hypotheses or score them. Although the number of
clusters K is generally low and thus estimating the
log-likelihood not too computationally expensive, sam-
pling is extremely fast and is the preferred approach.

3 Results

We have evaluated our approach on the Human3.6M
dataset [5, 6] which is a large dataset containing 11
actors performing various actions. A motion capture
system is used to provide an accurate 3D ground truth.
We show both qualitative and quantitative results in
which we compare our log-likelihood model against the
widely used Gaussian diffusion model.
We model the pose as a an articulated body of 15

joints. We normalize the data by using the center of
the hip as the coordinate origin and rotate it so that
the normal of the plane formed by the hip joints and
the neck joint is aligned with the principal axis. The
secondary axis is defined by the line from the center of
the hip joints to the neck joint. This gives us a unique
local representation of the pose which we are then able
to model with the SO(2)12 × SO(1)2 manifold as two
joints only have one degree of freedom each. Extending
this with the Lie algebra for the joint kinematics we fi-
nally obtain the SO(2)12 × SO(1)2 × so(2)12 × so(1)2

manifold we use. Instead of using a full covariance ma-
trix, we simplify by using the block diagonal approach
as in [13]. Therefore, each covariance matrix has 92
degrees of freedom. Note that the kinematics and the
pose are very different in magnitude. In order to avoid
fitting the model to the dominant data we scale them

Table 2. Comparison of different priors. We com-
pare against the widely used Gaussian diffusion,
trained both globally for all joints and individu-
ally for each joint. For our model, in parentheses
we show the percentage of the training set we are
considering, and the final number of estimated
clusters. For the Gaussian diffusion models we
do not perform subsampling of the training set.

Log-likelihood
Method Train Test
Samples 465,325 62,064

Gaussian diffusion 5.4325 5.4349
local Gaussian diffusion 6.4193 6.4206
Ours (30%, 211 clusters) 9.3382 11.7874
Ours (15%, 147 clusters) 8.9544 11.8714

both in the tangent space so they are roughly consis-
tent. In particular we multiply the kinematics in the
tangent space by a constant factor of 30.
We split the dataset using a leave-one-person-out

scheme. That is, we use all 15 categories of actions,
each comprised of two subcategories, for actors 5, 6,
7, 8, 9, and 11 for the training set, and use actor 1
for the test set. The diversity of the actions makes
the dataset very challenging to learn. This gives us
465,325 frames for training and 62,064 frames for test-
ing. Since the frames are highly correlated because
motion are smooth, we perform a random subsampling
before training our model.
Additionally, we provide quantitative results by

looking at the expected log-likelihoods on the test
dataset. We compare against the Gaussian diffusion
approach both trained on a global level (single Gaus-
sian is averaged for all joints) and on a more local level
(single Gaussian is averaged for each joint indepen-
dently). We additionally train several kinematic mod-
els with different degrees of subsampling of the training
data, and show the results in Table 2. A subsampling
of 15% corresponds to 69,799 training samples, roughly
the same amount as the test set. We can see that the
local Gaussian diffusion model outperforms the Gaus-
sian diffusion model with a single parameter. However,
our model outperforms both of them by a considerable
margin. It is interesting to note that the log-likelihood
of the test set is higher than that of the training set.
This can be explained by the presence of actors that
are outliers and are not as well captured by the model.
On the other hand actor 1 seems to be well represented
by the other actors. Increasing the number of samples
does increase the number of clusters in the model, but
does not significantly change the performance on the
test set. This is an indication that subsampling might
be an easy way to obtain more simple models that still
can generalize well for datasets in which there is a high
correlation between poses due to the temporal compo-
nent.
We finally depict some qualitative examples in

Fig. 3. We sample directly from p(v|x, θ) for several
frames. It is worth noting that we can obtain 100,000
samples in 0.85 seconds on a Intel Core i7 2.93GHz
CPU using a Matlab implementation.

4 Conclusions

We have presented a novel kinematic prior for 3D
human pose tracking based on extending a pose man-
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Figure 3. Qualitative examples. We show several examples from the test set using the 15% subsampled model
with 147 clusters. We visualize the ground truth and 100 samples from our model in 3D. For visualization
purposes the velocity is scaled by 10 and the samples are scaled by 3. We also show the distribution of the
samples on the tangent space for some of the joints, scored by their log-likelihood with the ground truth as
a black diamond.

ifold with its Lie algebra. By exploiting the fact that
the pose manifold is well known and defined, we can
use a simple mixture model defined on the manifold.
We show that our approach is able to scale well to
large datasets and can be sampled at a rate of over
100,000 samples per second, making it ideal for real-
time applications. We show quantitative results that
demonstrate a large improvement over the widely used
Gaussian diffusion models. Furthermore, it is straight-
forward to extend existing 3D human pose estimation
algorithms [11, 12] to tracking using the proposed prior
using stronger image features [14, 15].
While we have centered this work on 3D human

pose tracking, the framework we presented is general
for tracking data on other manifolds. Additionally, it
would be simple to extend our model to predict a pose
from multiple previous frames, to also modeling accel-
eration or other higher derivatives. We believe the sim-
plicity and the results of the proposed approach make
it a powerful tool for improving any sampling-based
tracking method.
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