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Abstract

This paper describes an approach to predict the hu-
man motion. Instead of using a simple motion model
as widely used, we take advantages of the environmen-
tal context, including the shape and structure, for pre-
dicting the human movement. First, we characterize
the environment using a graph representation. Sub-
sequently, we acquire the human trajectory tendency
on each environment and build a probabilistic sequence
model of the human motion. A particle filter-based pre-
dictor is then integrated into the system for generating
possible future paths of the person. FEwvaluations on a
real campus environment show the advantages of the
proposed approach.

1 Introduction

For many robotic applications, it is necessary for a
robot to understand its surrounding environment, in-
cluding the human around it. One of the important
cognition for the robot is to perceive the human mo-
tion and behavior. By figuring out the motion of each
person, it enables the robot to take any necessary ac-
tion, depending on the task’s demand. For instance,
a good prediction of the person movement can help
the robot to generate an effective motion plan which
tackles any possible collision in the future.

In many past works, especially for the people track-
ing purposes, the human motion is often assumed to
follow a simple model such as the constant velocity
model (e.g. [1] and [2]). Realizing the weakness of
the simple model, some recent works suggest a more
advanced approach for modeling the human motion.

Bennewitz et al. [3] tried to collect the pattern of the
human trajectories using an Fxpectation-Maximization
clustering and infer the human motion using a Hidden
Markov Model. Later, Vasquez et al. [4] proposed an
incremental model, so-called Growing Hidden Markov
Models, to learn and predict the motion patterns.

From another perspective, Kitani et al. [5] employed
an approach originated from the optimal control theory
to forecast the long-term destinations of a person using
a semantic scene. An interesting work by Luber et
al. [6] utilized a social force model-based method for
predicting the short-term intention of a moving person.

By assuming a person tends to move following the
shape of the environment, we believe that a deep com-
prehension to the environmental information is nec-
essary. Meanwhile, most of the mentioned works do
not consider how the environment will affect the per-
son movement (e.g. [1], [2], [3], [4], and [6]). In case
of [5], it exploits the physical attribute information of
the environment (such as building, car, and pavement),
but it is basically used for separating the walkable and
non-walkable area.
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Figure 1: Human motion prediction: (left) perspective map
view; (right) the robot camera view.

To close those gaps, we aim to incorporate the en-
vironmental information into our human motion pre-
diction system, by analyzing the context of the envi-
ronment. Here, the environmental context is defined
as the leverage of a specific feature and attribute of
the environment, including its shape and structure, to
the outcome of the human motion. The movement of
a person tends to follow the shape of a corridor, ei-
ther it is a T-junction, a cross-junction, or a straight
way. The person motion pattern on each junction is
also place-dependent, i.e. the person motion preference
will be governed by the functional entity on each edge
of the junction. For example, we empirically found
the students more likely choose the path towards the
classroom rather than the one towards the toilet at a
certain T-junction inside the building in our university.
Utilizing such information will be useful for predicting
where the person moves in the future.

We propose a novel framework for predicting the hu-
man motion. Initially, the environment is portrayed as
a graph representation. We then extract the human
trajectory trend and construct a probabilistic sequence
model using Hidden-state Conditional Random Field
(HCRF) [7], considering the person motion and envi-
ronmental features. A particle filter-based predictor is
then employed for yielding probable future paths and
goals to where the person may proceed (see Fig. 1).

Subject to the description above, our main contri-
bution lies on the contemplation of the environmental
context to the human motion prediction. It is also
worth to count the usage of the graph representation
for describing the environment as another contribution.

2 Proposed approach

Our objective is to utilize the environment infor-
mation to aid the human motion prediction. We be-
gin with characterizing the environment to obtain its
meaningful context. For example in the real world, we
can semantically categorize an indoor environment into
a hallway and a junction type, from which an environ-
ment is basically a connected sequence of both types.
Therefore, it is easy to predict the human motion on
the hallway (e.g. getting close or going away), and be-
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Figure 2: Graph representation of the map.

comes more difficult on the junction cases. Here we
intend to imitate the above human reasoning.

2.1 Environment representation as a graph

Given two dimensional grid map Q C R? acquired
by a SLAM algorithm [8], we then simplify the map
Q such that fsimp : Q — {P,K}. The mapping func-
tion fgimp follows the procedure mentioned in [9] to
obtain a polygonal model P, as well as the skeleton
of the map. From I, we can determine the junction
by applying a template matching over the map using
the junction models [9].

Now, we are able to represent the map as a graph
which connects the hallway and junction nodes, as
shown in Fig. 2. We set the range area of each node
to 10 meters, assuming the robot ability to detect and
track the person is limited (i.e. the robot visibility,
denoted by V). Here, the environmental context rea-
soning are employed. We assume the human motion on
the hallway nodes can be classified into two classes, get-
ting close and going away. Regardless of the junction
node, we also presume the human motion will follow
the skeleton shape.

As the robot’s “view” is limited, the person motion
can be predicted to go towards the frontiers, i.e. the
intersection of the robot visibility V' and the skeleton
K. Thereafter, we define G = {g1,92,...,9n} as the
goal locations the person may lead to, as follows

G={vqeQg=VnK}. (1)

2.2 Predicting the human motion

We formally define the trajectory of human motion
as S = {si1,82,...,5} which is a sequence of the
human position until the time ¢, where & are inter-
changeable with @ through a projection mapping. Let
U = {uy,ug,...,u,} be n class trajectory labels de-
noting the person intention to go towards each goal in
G. Let ¢s and ¢g respectively represent the observa-
tion of the human position and the goals located on
the frontiers from the current robot pose.

We aim to model the relationship between the per-
son trajectory, the goal locations, the predicted mo-
tion towards the goals (labels), and the observations
as p(S,G,U|ps, dg) respectively. Under the indepen-
dence assumption, the model can be written as

p(S,G,Ulds, ¢g) = pU|S,G)p(S,G|ds, ¢g).  (2)

The first term of the right-hand side of eq. (2) is ba-
sically the label prediction involving a sequence struc-
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Figure 3: Trajectory model using the HCRF.

ture, which is naturally solved using a sequence clas-
sifier. The second term models the person and goal
locations, which in our case, a gaussian distribution is
used.

2.2.1 Modeling the person trajectory as a se-
quence classification using the HCRF

To deal with the sequence prediction on eq. (2),
we utilize the Hidden-state Conditional Random Field
(HCRF) [7], as the structure is suitable for our trajec-
tory motion model which consists of a sequence of the
human pose with one label (see Fig. 3). Following the
work of [7], our HCRF is modeled as

pU|S, G ) < > pU,HIS, G ),
H

1
3 e Uit Gip)
X ————— e ,
Z(8,G;p) ”

where ¢ is the parameter to be estimated, f(-) repre-
sents the feature function, and Z(S,G;¢) denotes the
normalization factor. Here, a vector of hidden-states
H = {hi,ha,...,hy} are introduced as the possible
hidden labels inside the model [7].

After the parameter ¢ is optimized using a gradient
ascent method [10], we obtain the label score as follows

(4)

where ¢* is the learned parameter. For the classifica-
tion purposes, we take the maximum score as the label
for a trajectory.

U; = p(ui|87 g; SD*),

2.2.2 Feature function

The feature function f(-) in eq. (3) is composed us-
ing following features to capture the trajectory traits:

1. Position-based feature. We describe s;
{z¢,y:} € S as the human coordinate at the time
t. Subsequently, we can extend it to derive the
speed v and orientation 6 of the human motion as
follows

vp = st — se-1
Yt — Yt—1 )
Tt — Tp—1

(5)

0, = arctan(

These features are then quantized into three bins
and 16 bins histogram of the velocity and orienta-
tion respectively.



2. Topology-based feature. We want to figure out
how the environment structure will affect the hu-
man motion. Hence, we utilize the skeleton map
by calculating derivative of the distance function
towards the skeleton K for each element s; € S,
as follows

a(eHSi—Sic ||)
Os ’

r(s:) (6)
where the numerator denotes the distance of s; to the
nearest point sy in the skeleton. We expect to obtain
a high magnitude of r(s;) when a person traverses the
skeleton. This feature is then quantized into eight bins
histogram.

2.2.3 Particle filter-based predictor

As the observation ¢s and ¢g are updated through
the time, we recursively estimate the distribution in eq.
2 using a Bayesian framework, particularly a particle
filter. The state model is composed by X = {S,G,U},
and the dynamical model is described as

p(X|Xi1) = p(8t7$t|8t71»Stfl)p(gt|gt71)p(ut|utf(1)>;

7

where the first term is modeled using a first-order dy-

namical model, and the second and third terms are in
the form of the gaussian distribution.
The observation is then modeled as

p(9s, 9glS, G) = p(¢s]S)p(dgl9). (8)

Again, we use the gaussian distribution model for the
right-hand side of eq. (8).

We now have the confidence of the possible person
intention to head up to each goal in G using the score
of U. The last step is to generate the possible tra-
jectory of the person by connecting each goal to the
current person pose using a bezier curve considering
its confidence (e.g. Fig. 1). Please notice that the
decision of choosing the goal can be determined when
the confidence is above a threshold.

3 Experiments

The implementation of the described algorithm is
done on a Windows PC (i7 2.4 GHz, 16 GB RAM)
using C++ programming language.

3.1 Dataset evaluations

At first, we collect a set of person trajectories on
five different locations/junctions at our campus (see
Fig. 4), using a laser-based person tracker [11]. In
total, 983 trajectory sequences were captured, yielding
three to six trajectory classes per location. For each
location, we then randomly divide the data into two
different sets, i.e. for training and testing purposes.

We evaluate performance of the proposed method
utilizing the HCRF [7] for discriminating the person
trajectories on each location. We compare it with two
baseline methods, Conditional Random Field (CRF)
[12] and Hidden Markov Model (HMM) [13], due to the
nature of the problem as the sequence classification. In
the CRF experiments, each state in one trajectory is
respectively labeled using a same class, as the opposite
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Figure 4: Environment map showing locations/junctions.

Table 1: Comparison of trajectory classification

Method Accuracy (%) on Location
1 \ 2 \ 3 \ 4 \ 5

CRF 52.66 | 73.45 | 46.45 | 43.83 | 42.64
HMM 58.90 | 77.25 | 54.67 | 50.24 | 51.30
HCRF | 55.83 | 77.76 | 51.23 | 46.87 | 46.28
CRF + | 5990 | 74.23 | 49.00 | 46.47 | 44.64
context

HMM + 1 6 67 | 75.23 | 58.96 | 52.45 | 48.20
context

HCRE + 1 ¢ 24 | 80.45 | 61.62 | 57.00 | 53.44
context

to the HCRF which uses only one class label per trajec-
tory. Both CRF and HCRF are accordingly trained for
each location as a multi-class classifier. On the other
hand, we generate the model for each trajectory class
for the HMM.

On each mentioned method, we engage two different
types of the feature usage; using only the positional
information, and combining the positional and context
(i.e. topological features).

Table 1 shows the accuracy of the trajectory clas-
sification. Please note that at “location 2”, we have
only three classes of the trajectory, make it easier to
do the classification here rather than the one on the
other locations and achieve a high accuracy. We can
clearly see that taking into account the environmental
context enhances the trajectory class recognition rate.
Moreover, The usage of the HCRF has a benefit over
the other methods. It can be explained by the ability
of the HCRF to model the hidden structures of the tra-
jectory sequence and its relationship toward one single
label, which is lack in the CRF and HMM.

3.2 Predicting the human motion on a robot

We employ a mobile robot equipped by a laser range
finder and a camera to verify the performance of our
human motion prediction. The same laser-based per-
son tracker mentioned in section 3.1 is utilized. We
carry out the experiments on “location 17.

Figure 5 shows the prediction performance of our
system. Initially, each possible trajectory of the per-
son towards the predicted goal has an equal distribu-
tion. The predicted goals are determined by the cur-
rent frontiers of the robot, explained in section 2.1.



Figure 5: Human motion prediction on a robot (left-to-right):
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Figure 6: Distribution of the predicted trajectory over the time,
according to the top figures of Fig. 5.

As the person data sequence grows, the information
about the person speed, orientation, and the environ-
mental context becomes more certain and will be fed
to our system. Hereupon, the predicted trajectory will
be condensed towards the predicted goals which have
a higher likelihood according to the classifier.

The human motion prediction performance is quali-
tatively satisfying according to Fig. 5. It is supported
by the tendency graph on Fig. 6, which shows the
distribution of each predicted trajectory over time.

4 Conclusions

We have established an algorithm for predicting the
human motion, considering the context of the environ-
ment. By composing the probabilistic sequence model
of the human motion, we capture the human trajectory
tendency on each environment structure. Afterwards,
we predict the human intention by incorporating the
model on a particle filter-based system. Experimental
results support the benefit of our approach over the
other methods.

Although the evaluations were done for predicting
the human movement on an indoor campus environ-
ment, our algorithm may potentially be generalized to
the cases on any structured environment with any mov-
ing object (e.g. vehicle movement on the road). While
the current work is restricted to the single-person con-
text, in the future it will be interesting to consider a
multi-person motion prediction with its mutual trajec-
tory and social behavior. Another possible future di-
rection is to carefully examine the feature nonlinearity
for increasing the prediction ability.

(top) the person moves away from the robot; (bottom) the person
comes closer to the robot. For each set, the left figure is the perspective map view, the right one shows the camera view.
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