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Abstract

Distributed processing is a new paradigm to anal-
yse the huge volume of video data in camera networks.
This paper addresses the problem of distributed single
target tracking considering false positives and missed
detections. Target tracking is modelled as a dynamic
state estimation problem with nonlinear process and
measurement model. We propose to use the sigma
point information filters combined with a consensus al-
gorithm. Sigma point information filters are integrated
with probabilistic data association filter to deal with
false positives and missed detections. We use a dis-
tributed average consensus algorithm which converges
in finite time. Unlike other related state of the art tech-
nique papers, we report results on real data and show
the effectiveness of the proposed algorithm.

1 Introduction

Increasing applications of camera networks pose new
challenges to the computer vision community. The ap-
plications include surveillance, monitoring the elderly
people in smart homes and military applications. The
challenges include developing new algorithms which
make use of full potential of the installed camera net-
works. The algorithms should be simple, real time and
robust to camera failures.
Distributed video processing is gaining lot of impor-
tance. Distributed processing has the following char-
acteristics: i) No central server. ii) Cameras carry
out local processing and communicate with immediate
neighbours iteratively to improve the results. iii) The
results at each camera should be equal to that of cen-
tralized method. Consensus based distributed process-
ing methods are very popular because of their simplic-
ity, robustness and scalability. Specifically, distributed
average algorithms are core algorithms for many dis-
tributed processing. Our work is also based on dis-
tributed averaging algorithm.
Cameras are directional sensors and have limited field
of view (FoV). In a general camera network a target is
covered by few cameras only. This causes the camera
networks to face a new challenge known as naivety [1].
The camera which does not has information about the
target either directly or from neighbours is referred as
naive camera. These naive cameras can effect the final

result in the distributed processing. Hence naivety is
one of the key issue while addressing the distributed
target tracking in camera networks.
In [3], authors integrated extended Kalman consen-
sus filter (EKCF) with joint probabilistic data associ-
ation filter (JPDA) and developed JPDA-EKCF. But
EKCF does not work well [1] for camera networks. In
[2], the author developed extended multi target infor-
mation consensus filter (EMTIC) by extending infor-
mation consensus filter (ICF) to account for nonlinear
measurement model and by integrating with JPDA to
account for measurement uncertainty. Another exten-
sion of ICF was developed in [4], to account for non-
linear process and measurement model but in this pa-
per the authors have not considered false positives and
missed detections. JPDA-EKCF and EMTIC both are
based on extended Kalman filter principles. But in
this paper, we use a consensus based method for dis-
tributed target tracking using the principles of sigma
point information filters and PDA filter. In existing
consensus based tracking methods, the authors have
used a distributed average algorithm which converges
asymptotically. But we use a distributed average al-
gorithm which converges in finite time, so that we can
obtain the exact convergence to the results of central-
ized method. It also reduces the communication and
computation cost. Above mentioned state of the art
consensus based papers reported results on simulation
data only. In this paper we report results on real world
and simulation data.

2 Problem Statement

Consider a set of networked cameras C =
{C1, C2, . . . , CNc}, (Nc is number of cameras) with
overlapping FoV. We assume the communication be-
tween cameras is noise free and the communication
graph is time invariant. In this paper we address the
single target tracking problem considering false posi-
tives and missed detections. The target movement is
modelled by

x(k + 1) = f(x(k)) +Gη(k) (1)

where k denotes time index, x(·) ∈ R
n a state vector,

f(·) is a nonlinear function, G is a coefficient matrix,
η(·) is white Gaussian noise with covariance Q. The
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measurement model for the camera i is given by

z̃i(k+1) = hi(x(k+1))+vi(k+1), i = 1, 2, .., Nc (2)

where z̃i ∈ R
p is a measurement vector, hi(·) is a non-

linear function, vi(·) is the measurement noise ( white
Gaussian with covariance Ri ∈ R

p×p). vi and η, as
well as measurement noise across cameras are assumed
to be uncorrelated. Our proposed solution estimates
the true states x(·) of the target in a distributed man-
ner given the observations z̃i(·) from cameras. We hope
that context makes it clear some abuse of notations in
our work.

3 Sigma Point Information Filters

In this section, we review sigma point information
filters [5] and develop the proposed distributed sigma
point information filter. Sigma point filter (SPF) is
an approximate estimation technique used in nonlin-
ear estimation. SPF uses standard Kalman filter struc-
ture which has two stages, predict and update. During
these stages, Kalman filter requires only mean and co-
variance of the posterior distribution. In general, for
nonlinear systems these moments may be difficult to
obtain. But SPF uses sigma point transform (SPT) to
obtain the required moments.

3.1 Sigma Point Transform

Let y = g(x), g(·) is a nonlinear function, x is a
random vector with mean x̂ and covariance Pxx and
we seek the mean and covariance of y. The working
principle of SPT is as follows: A set of samples known
as sigma points are generated deterministically from
the given prior random vector x. One choice to gen-
erate the sigma points χm is according to following
equations

χ0 = x̂

χm = x̂+ (
√
(n+ λ)Pxx)m,m = 1, 2, . . . , n

χm+n = x̂− (
√
(n+ λ)Pxx)m,m = 1, 2, . . . , n

(3)

where n is dimension of x, λ = α2(n+κ)−n is a scal-
ing parameter with α a constant parameter (usually
set to a small value) and κ a scaling parameter. The

term (
√
(n+ λ)Pxx)m is the mth row or column of the

matrix square root of (n+ λ)Pxx. The corresponding
weights for the mean wmean

m and covariance wcov
m are

given by

wmean
0 =

λ

n+ λ
;wcov

0 =
λ

n+ λ
+ (1− α2 + ξ)

wcov
m = wmean

m =
1

2(n+ λ)
,m = 1, 2, . . . , 2n

(4)

where ξ is a parameter used to incorporate the prior
knowledge of the distribution.
The generated sample points are propagated through
the nonlinear equation

Ym = g(χm),m = 0, 1, . . . , 2n (5)

The mean and covariance matrix of the posterior ran-
dom vector y are given by

ŷ =

2n∑
m=0

wmean
m Ym (6)

Pyy =
2n∑

m=0

wcov
m [Ym − ŷ][Ym − ŷ]T (7)

Sigma point filters can also be interpreted as statistical
linearization of g(x). Here we seek A and c such that
y = g(x) ≈ Ax+c. We obtain A and c by minimizing
the sum of squared errors em = Ym − (Aχm + c) i.e.,

(A, c) = argmin
A,c

2n∑
m=0

eTmem (8)

Above equation has the following solution:

A = PT
xyP

−1
xx ; c = ŷ −Ax̂ (9)

Pxy can be calculated by

Pxy =
2n∑

m=0

wcov
m [χm − x̂][Ym − ŷ]T (10)

3.2 Information Form Filters

Information filter is algebraically equivalent to stan-
dard Kalman filter but is more suitable for distributed
implementation. Because the equations in information
filter are easy to decouple. The details of the follow-
ing “information form” of sigma point filters can be
found in [5]. Define information matrix Yxx(k/k) and
information vector ŷ(k/k) as

Yxx(k/k) = P−1
xx (k/k) (11)

ŷ(k/k) = Yxx(k/k)x̂(k/k) (12)

For linearized equations (1) and (2), the standard
Kalman filter equations can be expressed in informa-
tion form as below. The prediction step equations are

ŷ(k/k − 1) = Yxx(k/k − 1)

[F̄(k)Y−1
xx (k − 1/k − 1)ŷ(k − 1/k − 1) + cx(k)] (13)

Yxx(k/k − 1) = [F̄(k)Y−1
xx (k − 1/k − 1)F̄T (k) + Q̄(k)]−1

(14)
where F̄(k) and cx(k) are obtained as discussed in

section 3.1.

Q̄(k) = Pxx(k/k − 1)− F̄(k)Pxx(k − 1/k − 1)F̄T (k) (15)

Under the assumption of uncorrelated noise across
cameras, the update step equations are given by

ŷ(k/k) = ŷ(k/k − 1) +

Nc∑
i=1

ii(k) (16)

Yxx(k/k) = Yxx(k/k − 1) +

Nc∑
i=1

Ii(k) (17)

ii(k) = H̄T
i (k)R̄

−1
i (k)[z̃i(k)− cz̃i (k)] (18)

Ii(k) = H̄T
i (k)R̄

−1
i (k)H̄i(k) (19)
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R̄i(k) = Pz̃iz̃i(k/k)− H̄i(k)Pxx(k/k− 1)H̄T
i (k) (20)

where H̄i(k), c
z̃
i (k) are obtained as discussed in sec-

tion 3.1. To deal with missed detections and false pos-
itives, sigma point filters are integrated with proba-
bilistic data association (PDA) filter.
To derive information form equations of sigma point
filters with PDA, first we note that the prediction step
equations do not change. We use measurements during
update step for obtaining the information contribution
vector ii(k) and matrix Ii(k). Hence we need to define
these vector and matrix. This can be done by first
writing equations of sigma point filters with PDA in
standard Kalman filter form and then deriving equiv-
alent information form equations. See [5] for details.
The information contribution vector and matrix for
sigma point filters with PDA are given by

ii(k) = H̄T
i (k)R̃

−1
i (k)ζi(k) (21)

Ii(k) = H̄T
i (k)R̃

−1
i (k)H̄i(k) (22)

R̃i(k) = R̄i(k) + [B−1
i (k)− S̄−1

i (k)]−1 (23)

ζi(k) = [Iden+ (B−1
i (k)− S̄−1

i (k))−1S̄−1
i (k)]νi(k)

+ H̄i(k)x̂(k/k − 1) (24)

S̄i(k) = R̄i(k) + H̄i(k)Y
−1
xx (k/k − 1)H̄T

i (k) (25)

νi(k) =

li(k)∑

t=1

βt
iν

t
i(k) (26)

νt
i(k) = z̃ti(k)− hi(x(k/k − 1)) (27)

Bi(k) = β0
i S̄i(k) +

li(k)∑

t=1

βt
iν

t
i(k)ν

tT
i (k)− νi(k)ν

T
i (k) (28)

βt
i , t = 1, 2, .., li(k), (li(k) is number of measurements

in camera i at time k) are association probabilities used
in PDA. Iden denotes identity matrix.

3.3 Proposed Method

From the equations (16) and (17), we note that in
both equations second term is the only term which
requires information from all cameras. We also note
that the second term is expressed as sum of the infor-
mation contribution vector ii(k) and matrix Ii(k) from
individual cameras. By denoting the iavg(k) as average
of i1(k), i2(k), ..., iNc(k) and similarly for Iavg(k), the
update equations are given by

ŷcent(k/k) = ŷcent(k/k − 1) +Nciavg(k) (29)

Ycent
xx (k/k) = Ycent

xx (k/k − 1) +NcIavg(k) (30)

The superscript cent is introduced to emphasize that
the above equations are “centralized equations”. From
(29) and (30), we note that the problem of centralized
estimation boils down to an averaging problem. To
obtain average of vectors and matrices in distributed
manner, we apply a distributed average algorithm [7]
on each component of the vector and the matrix inde-
pendently. This algorithm converges to true average
in finite time. Thus we implement centralized target
tracking problem in distributed manner.
Algorithm 1 gives the complete procedure for proposed
single target distributed sigma point information filter

Table 1: Dataset information: T is number of time
instants.

Dataset Nc T Scene Type
EPFL Terrace1 [10] 4 275 Outdoor
EPFL Lab6 [10] 4 121 Indoor
TeV MVPDT [11] 4 301 Indoor
UCSB Hallway [12] 5 201 Indoor

Simulation [4] 9 40 –

(STDSPIF). We run this algorithm at each camera and
at every time instant. We initialize all cameras with
the same prior values. Since the distributed average al-
gorithm converges to exact average in finite time, the
convergence of the proposed algorithm to centralized
algorithm is ensured.

Algorithm 1 STDSPIF: At camera i at time k (Note:
we are dropping i for clarity)

Input: x̂(k/k − 1),Pxx(k/k − 1), {z̃t}l(k)t=1
Data Association:
1) Generate samples using (3) by replacing x̂ and Pxx

with x̂(k/k − 1) and Pxx(k/k − 1) respectively.
2) Propagate the samples through the measurement
equation.
3) Obtain measurement prediction, innovation covari-
ance and cross covariance, using (6), (7) and (10) re-
spectively.
4) Obtain H̄(k), R̄(k) and S̄(k) using (9), (20) and
(25) respectively.
5) Calculate the probabilities βt

6) Obtain R̃(k), ζ(k), information contribution vec-
tor i(k) and information contribution matrix I(k) us-
ing (23), (24), (21) and (22) respectively.
Consensus: Run average consensus algorithm inde-
pendently on each component of I(k) and i(k).
Update:

Yxx(k/k) = Yxx(k/k − 1) +NcIavg(k) (31)

ŷ(k/k) = ŷ(k/k − 1) +Nciavg(k) (32)

Prediction: 1) Generate samples using (3) by replac-
ing x̂ and Pxx with x̂(k/k) and Pxx(k/k) respectively.
2) Propagate the samples through the process equation.
3) Obtain state prediction, prediction covariance and
cross covariance, using (6), (7) and (10) respectively.
4) Obtain F̄(k + 1), cx(k + 1) and Q̄(k + 1) using (9)
and (15) respectively.
5) Obtain predictions using (11) ,(12) ,(13) and (14).

4 Experimental Results

We evaluated the proposed method with various
publicly available multi-camera pedestrian datasets.
The details are given in Table 1. For each dataset we
have created ground truth for one of the camera using
Video Annotation Tool VATIC [8]. We obtained target
positions by running discriminatively trained part
based model algorithm [9]. To realize sparse network
connection we used line communication graph. To
demonstrate the naivety issue, we considered only
those frames in which target is detected in only one of
the cameras (except for EPFL Terrace1).
State vector of the target is given by
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Figure 1: MSE values for
various datasets

Table 2: MSE values

Dataset STSPIF EMTIC
JPDA
EKCF CSPIF CEIF

EPFL Terrace1 [10] 0.9107 0.9216 1 0.9107 0.9216
EPFL Lab6 [10] 0.5217 0.8005 1 0.5217 0.8005
TeV MVPDT [11] 0.0797 0.1789 1 0.0797 0.1789
UCSB Hallway [12] 0.6540 0.8261 1 0.6540 0.8261

Simulation [4] 0.2995 0.4462 1 0.2995 0.4462

Figure 2: VOC scores for
various datasets

Table 3: VOC Scores

Dataset STSPIF EMTIC
JPDA
EKCF CSPIF CEIF

EPFL Terrace1 [10] 0.8093 0.8079 0.7755 0.8093 0.8079
EPFL Lab6 [10] 0.7565 0.6832 0.5661 0.7565 0.6832
TeV MVPDT [11] 0.6484 0.5709 0.1417 0.6484 0.5709
UCSB Hallway [12] 0.8247 0.8097 0.8001 0.8247 0.8097

[x(k), y(k), ẋ(k), ẏ(k), ρ(k)]T . The process model
is given by

x(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
sin(ρ(k)Δt)

ρ(k)
cos(ρ(k)Δt)−1

ρ(k)
0

0 1
1−cos(ρ(k)Δt)

ρ(k)
sin(ρ(k)Δt)

ρ(k)
0

0 0 cos(ρ(k)Δt) −sin(ρ(k)Δt) 0
0 0 sin(ρ(k)Δt) cos(ρ(k)Δt) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

x(k)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

Δt2

2
0 0

0 Δt2

2
0

Δt 0 0
0 Δt 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

η(k) (33)

where (x(k), y(k)) is the position of the target,
(ẋ(k), ẏ(k)) is the velocity and ρ(k) is the turn rate.
Δt denotes the length of the time step. The noise
η(k) ∼ N (0,Q(k)).
The measurement equation is modelled by [4]

z̃i(k) =

[
ui(k)
vi(k)

]
=

⎡
⎣Hi

11x(k)+Hi
12y(k)+Hi

13

Hi
31x(k)+Hi

32y(k)+Hi
33

Hi
21x(k)+Hi

22y(k)+Hi
23

Hi
31x(k)+Hi

32y(k)+Hi
33

⎤
⎦+ vi(k)

(34)
where (ui(k), vi(k)) is the pixel coordinates of the tar-
get in the image plane of the camera i at time k.
The values Hi

11, . . . H
i
33 are the elements of the ho-

mography matrix and the measurement noise vi(k) ∼
N (0,Ri(k)).
Following methods were implemented and compared:
The proposed STDSPIF and it’s centralized ver-
sion (CSPIF), EMTIC [2] and it’s centralized version
(CEIF) and (JPDA-EKCF) [3]. EMTIC and JPDA-
EKCF are modified to account the nonlinear process
model. EMTIC is implemented using the finite time
convergence average algorithm and JPDA-EKCF is
modified to support multiple consensus iterations [2].
Since ground truth was available, most of the required
parameters are estimated. The remaining parameters
are choosen such that each algorithm performs reason-
ably well. In our experiments we found that all these

algorithms diverge for inappropriate parameters.
As performance measure we report mean square er-
ror (MSE) [2] and mean VOC detection score (for real
data). The error is defined as Euclidean distance be-
tween the true position and the estimated position.
MSE of all algorithms are normalized with respect to
JPDA-EKCF algorithm MSE. VOC detection score is
ratio of intersection area of predicted bounding box
and ground truth bounding box to union area of pre-
dicted bounding box and ground truth bounding box.
From Figures 1, 2 and Tables 2,3 we made following ob-
servations: i) STDSPIF and EMTIC are converged to
their corresponding centralized schemes. ii) In EPFL
Terrace1 sequence the target is visible in many of the
cameras for most of the time and has a relatively sim-
ple motion. Hence all algorithms performed well. Even
JPDA-EKCF works fine as there is no issue of naivety.
iii) In EPFL Lab6 sequence, initially the target has a
simple linear motion then target takes a U turn. At
this point of time other algorithms deviates away from
the true track but our algorithm continues to track the
target. Hence the improved result. iv) TeV multi view
people detection and tracking (MVPDT) sequence is
a complex dataset. Although there is no naivety issue
here, this dataset has high rate of false positives and
more nonlinearity. For this dataset the homography
matrices were not available hence they are estimated.
In this case the performance of all algorithms degraded
but our algorithm works well compared to other algo-
rithms. v) In UCSB Hallway sequence camera 1 is
naive about the target for most of the time. It is in-
teresting to observe that MSE value of JPDA-EKCF
is high yet the VOC score is good enough to compete
with other algorithms. This is because the target is
visible almost all the time in camera 5. Coincidently
Camera 5 is used to calculate the VOC score. We
calculated MSE over all cameras but VOC score is cal-
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culated for only one camera (for which ground truth
is available). vi) When target motion is almost linear,
all algorithms work equally well. But our algorithm
works better when there is more nonlinearity in the
model. In some cases no algorithms work good. We
have uploaded a supplementary video showing the per-
formance of different algorithms on these datasets.
We performed simulation experiments also to further
validate our results. We modified the source code
provided by [4] to incorporate our process model and
to consider the false positives and missed detections.
In this experiment we used ring topology. Follow-
ing parameters are used in this experiment: Q =
diag([2, 2, 0.01]), R = diag([15, 15]). False measure-
ments were generated at each node at each measure-
ment step using a Poisson process with λ = 1/5. For
the fixed parameters the experiment was run for 100
different simulations, each time generating new track.
Few times some of the algorithms were diverged, we
ignored these cases. The reported MSE values are av-
erage of successfully run experiments. In this experi-
ment also, our proposed algorithm works better than
other algorithms.

5 Conclusions

In this paper we have proposed a consensus based
sigma point information filter (STDSPIF) for dis-
tributed single target tracking in camera networks.
We have used average consensus algorithm which con-
verges in finite time. We performed experiments on
real world and simulation data. The experimental re-
sults show that the STDSPIF method performs better
than JPDA-EKCF and EMTIC. The performance of
our algorithm is better when there is more nonlinear-
ity in the model. We are working on extending the
proposed algorithm to multiple targets and to improve
its stability.
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