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Abstract

The tracking of moving points in image sequences
requires unique features that can be easily distinguished.
However, traditional feature descriptors are of high
dimension, leading to larger storage requirement and
slower computation. In this paper, Principal Compo-
nent Analysis (PCA) is applied to the 64-Dimension
(D) Speeded Up Robust Features (SURF) descriptor
to reduce the descriptor dimensionality and computa-
tional time, and suggest the minimum number of di-
mensions needed for reliable tracking with the Kalman
Filter (KF). Tests using image sequences, from an
RGB-D camera, are used to validate the performance
of the reduced PCA-SURF descriptors as compared to
the standard SURF descriptor.

1 Introduction

For mobile robots to operate in dynamic environ-
ments they must be able to detect and track station-
ary and moving objects. Tracking generally involves
estimating the position and velocity of objects over a
sequence of measurements. For robust tracking, ob-
jects need to be uniquely identifiable. In image data,
feature descriptors allow for image features to be iden-
tified as distinct. These descriptors are usually of high
dimension and processing is expensive in terms of both
computational time and memory.
Principal Components Analysis (PCA) is a dimen-

sionality reduction technique, that has been applied to
reduce the dimensionality of feature descriptor vectors,
in several image-related applications.
Ke et al. [4] applied PCA to the normalized gradi-

ent patch of Scale-Invariant Feature Transform (SIFT).
The 3042-Dimension (D) PCA-SIFT feature descriptor
was reduced to 20 dimensions and retained good per-
formance in an image retrieval application.
Lu et al. [6] applied PCA to the Histograms of Ori-

ented Gradient (HOG) descriptor to obtain the 20-D
PCA-HOG descriptor, for simultaneous tracking, with
the Particle Filter (PF), and action recognition.
PCA was applied to the 128-D Speeded Up Robust

Features (SURF) feature descriptor to produce PCA-
SURF feature vectors for face recognition [5].
In [10], PCA was applied to the 128-D SIFT and

64-D SURF descriptor to yield Reduced-SIFT and
Reduced-SURF feature vectors, respectively. The re-
duced vectors were evaluated in matching and image
retrieval. The use of 32 dimensions produced results
similar to SIFT and SURF. To further decrease the
computational time and memory used, 20 dimensions
was used with a trade off in accuracy.
Euclidean distance was used for matching with ei-

ther Nearest Neighbor (NN) [4, 10] or NN Distance
Ratio (NNDR) [5, 10].

In the applications above, the low dimensional PCA
feature descriptors consumed less computational time
and memory than the standard descriptors, and in-
creased processing speed.
Gauglitz et al. [3] deduced that the Fast Hessian

detector and SURF/SIFT descriptors perform well for
tracking during motion and a starting motion. Track-
ing was simulated via homography rather than an ex-
plicit tracking algorithm. PCA was not used.
Although PCA feature descriptors have been applied

in the above image-related applications, the novelty of
this paper is in applying PCA-SURF descriptors to
track dynamic changes in 3D image sequences. PCA
is applied to the 64-D SURF descriptor to reduce the
descriptor dimensionality and computational time, and
suggest the minimum number of dimensions needed for
reliable tracking with the Kalman Filter (KF). Tests
using image sequences are used to validate the perfor-
mance of the reduced PCA-SURF descriptors as com-
pared to the standard SURF descriptor.
The detector-descriptor combination mentioned by

[3] is suitable for the tracking application herein which
involves motion of the camera in a stationary environ-
ment. SURF is used as it is computationally more
robust than SIFT [1]. Mahalanobis distance is used
for descriptor matching with Global NN (GNN) algo-
rithm.
The PCA-SURF method applied is this paper is in-

dependent of the tracking algorithm used. KF tracking
is used for experiments as it is well suited to linear dy-
namic applications.
Tracking is performed on a RGB-D image dataset

[8]. The advent of affordable RGB-D cameras, allows
for the availability of both color and depth data from
a single sensor.
The rest of the paper is organized as follows: Section

2 explains SURF, PCA and KF. Section 3 describes
the method used to obtain the PCA-SURF descriptors
and the tracking application. Section 4 evaluates the
performance of the descriptors for tracking. Section 5
concludes the work.

2 Technical background

2.1 SURF

SURF is scale and rotation invariant. The detector is
based on the Hessian matrix. The use of box filters and
integral images allows for efficient computation. The
descriptor consists of a distribution of Haar-wavelet re-
sponses that represent the underlying intensity pattern
around the detected point [1].

2.2 PCA

PCA is a technique for dimensionality reduction [4,
10, 7]. It involves the following steps:
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(1) A matrix M consisting of a set of training vectors
in the high dimensional space is obtained.

(2) The mean of each dimension in M is subtracted
from its respective dimension to give a mean-
adjusted matrix M .

(3) The covariance matrix of the mean-adjusted,
training vectors in M is calculated.

(4) The eigenvectors and eigenvalues of the covariance
matrix are calculated. Eigenvectors with high
eigenvalues represent dimensions of greater vari-
ability.

(5) The eigenvectors are arranged in descending order
of their eigenvalues. The eigenvectors with high
eigenvalues are selected to form the eigenspace or
projection matrix P .

(6) A new data matrix N is obtained by projecting
the mean-adjusted matrix over the projection ma-
trix,

(
N = P ×M

)
. N contains vectors of n di-

mensions, where n is the number of eigenvectors
selected.

2.3 KF

The standard KF algorithm is presented in Algo-
rithm 1, adapted from [9]. The input of the KF is the
prior probability distribution at time k−1, in the form
of its mean x̂k−1 and covariance Pk−1 and the mea-
surement zk. The output is the posterior probability
distribution in the form of its mean x̂k and covariance
Pk.
In the prediction step, (1) and (2), the prior mean

and covariance at k − 1 are used to predict the mean
x̂k|k−1 and covariance Pk|k−1, at k. Ak is the motion
model and Qk is the process noise covariance matrix.
In the measurement update step, (3) to (7), the mea-

surement zk is used to compute the mean x̂k and co-
variance Pk at k. Hk is the measurement model and
Rk is the measurement noise covariance matrix.
The innovation yk is the difference between the ac-

tual measurement zk and the predicted measurement
Hk(x̂k|k−1), (3). Sk is the innovation covariance ma-
trix, (4). The Kalman gain Kk indicates the amount
by which the measurement should be included in the
posterior, (5). The posterior is returned in the form of
its mean and covariance in (6) and (7). The estimate
x̂k is also referred to as the state vector [9, 2].

3 PCA-SURF descriptors

3.1 Training

The eigenspace was computed offline with a training
set for the 64-D SURF descriptor. The training set
consisted of features from the first image of each of
four RGB-D datasets [8]. Training images were not
used for tracking tests.
A total of 2408 SURF features and descriptors were

extracted from the images. PCA was applied to the
descriptor vectors to estimate projection matrices.
Figure 1 shows the percentage of variance retained

from PCA versus the number of descriptors. A greater
percentage of variance is retained with a higher number
of descriptors.

Algorithm 1:
Kalman Filter (x̂k−1, Pk−1, zk)
Prediction

x̂k|k−1 = Akx̂k−1 (1)

Pk|k−1 = AkPk−1A
T
k +Qk (2)

Measurement update

yk = zk −Hk

(
x̂k|k−1

)
(3)

Sk = HkPk|k−1
HT

k +Rk (4)

Kk = Pk|k−1H
T
k S

−1
k (5)

x̂k = x̂k|k−1 +Kkyk (6)

Pk = (I −KkHk)Pk|k−1 (7)

return x̂k, Pk

Figure 1. Percentage of variance retained versus
the number of descriptors.

3.2 Tracking

The 64-D descriptors were projected to the lower
feature space with the respective projection matrix.
For experiments, tracking was executed with the KF
and GNN. The state vector x̂k for tracking a feature
is shown in (8). It consisted of the feature’s X, Y, Z
(where Z is derived from depth) position, velocity in X,
Y, Z (Vx, Vy, Vz, respectively) and the n-dimensional
descriptor (d) vector, where n is the selected number
of significant descriptors. Ak, Hk, Qk (where the con-
stant q = 20), Rk, and Pk, are defined in (9) to (13)
respectively.

x̂k = [X Y Z Vx Vy Vz d1 d2 . . . dn] (8)

Ak =

[
I3×3 �t I3×3 03×n

03×3 I3×3 03×n

0n×3 0n×3 In×n

]
(9)

Hk =

[
I3×3 03×3 03×n

0n×3 0n×3 In×n

]
(10)
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Qk = q

⎡
⎣ �t3

3 I3×3
�t2

2 I3×3 03×n
�t2

2 I3×3 �t I3×3 03×n

0n×3 0n×3 In×n

⎤
⎦ (11)

Rk = 2

[
Rxyz3×3

03×n

0n×3 Rdn×n

]
(12)

Pk =

[
Rxyz3×3

Rxyz3×3
03×n

Rxyz3×3
2Rxyz3×3

03×n

03×n 03×n Rdn×n

]
(13)

Rk was composed of an upper left diagonal subma-
trix Rxyz representing the variation of the spatial di-
mensions and a diagonal submatrix Rd containing the
maximum variance for each descriptor, as determined
from the training data.
To associate features from one frame to the next, a

window was sized around the respective state predic-
tion value. An observation that fell in the window was
a potential match for the track and its Mahalanobis
distance was calculated. The GNN algorithm was used
to find the best assignment for the tracks.

4 Results

The tests were conducted in Matlab on a Linux com-
puter with an Intel Core i7 - M640 CPU with 2.8 GHz
clock speed and 4 Gbytes of RAM.
The 64-D SURF descriptor vector was reduced to

46, 36, 32, 28, 27, 26, 20, 16, 10, 6 and 3 by PCA to
estimate the minimum number of dimensions needed
for reliable tracking.
Thirty frames from the freiburg1 xyz RGB-D

dataset [8] were used for tracking. The camera ground
truth was provided with the dataset. A Kinect camera
was moved along its principal axes in X, Y and Z while
viewing a stationary office environment. The first color
and depth image of the sequence are shown in Figure
2.
Tracking performance with the 64-D descriptor was

compared to the reduced descriptors. Five features
were tracked over 30 frames. The accuracy of tracking
with each descriptor dimension, for each track, was
calculated as in (14). The number of correct matches
for each track was verified manually.

Accuracy =
Number of correctmatches

Total number of matches
× 100 (14)

Figure 2. Color image (left) and corresponding
depth image (right) of RGB-D dataset [8].

Figure 3. Accuracy versus number of descriptor
dimensions.

The accuracy for each track and the average accu-
racy are shown in Figure 3. A track with 100% ac-
curacy for a particular descriptor dimension was re-
garded as a correct track. The number of tracks cor-
rectly tracked by the KF for the descriptor dimensions
tested are shown in Table 1.
The 64-D descriptor had 100% accuracy and 5 cor-

rect tracks. The accuracy and performance of 46, 36,
32, and 28-D descriptors were similar to the 64-D de-
scriptor, shown in Figure 4.
The relatively large cluster sizes of the feature po-

sitions in world coordinates may be due to the non-
synchronized color and depth images from the Kinect.
There is a small time delay between the color and depth
images [8]. Color and depth images were matched by
time proximity and the average of their arrival times
was used to identify the corresponding ground truth
camera pose, used in computing the world coordinates.
Tracking performance started to decrease below the

28-D descriptor. The 27, 26, 20 and 16-D descriptors
had 4 correct tracks. The 10-D descriptor had 3 cor-
rect tracks. The 6 and 3-D descriptor each had only 1
correct track. As seen in Figure 4, the average of the
accuracy scores drops gradually from 28 to 10-D and
then quite rapidly from 10 to 0-D. The 10-D descriptor
retains a variance of about 90%, as shown in Figure 1.
The need for additional information beyond the spa-

tial position of the feature is evidenced by the per-
formance when the number of descriptors is zero as
shown in Figure 5. None of the five tracks completed
correctly, each drifted away from its original feature
of interest, unable to distinguish it from other nearby
features.
As the number of descriptor dimensions decreased,

the accuracy and performance of the tracker decreased.
The decrease in accuracy and drift in the unsuccessful
tracks of the descriptor dimensions from 27 to 0 indi-
cates that incorrect measurements were chosen to ex-
tend the track. As the number of dimensions decrease
the descriptor loses its distinctiveness when compared
to other descriptors and an incorrect measurement can
easily be chosen.
With regard to the number of dimensions that might

be required, it is visible in Figure 1 that even with
28 descriptors, about 99% of the variance is retained.
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Figure 4. Tracks in world frame versus the camera
ground truth for the 64-D descriptor.

This suggests that tracking should be successful with
28 descriptors.
The normalized time to track the five tracks for the

different descriptors is shown in Table 1. The time
decreased by about 40% from the 64-D descriptor to
the 28-D descriptor.

5 Conclusions

Tracking of features in image data requires more
than just the three-dimensional position and velocity
estimates of the features. The natural choice for ad-
ditional feature data is feature descriptor information
such as SURF descriptors. These descriptors exist in
a high dimensional space which can be effectively re-
duced using PCA.
In this paper PCA was applied to the 64-D SURF

descriptor to reduce the descriptor dimensionality and
computational time. Simulations validated the perfor-
mance of the reduced PCA-SURF descriptors as com-
pared to the standard SURF descriptors, providing an
estimate of 28 for the minimum number of dimensions
needed for reliable tracking. The low dimensionality of

Table 1. Descriptor dimension, number of correct
tracks and normalized time to track 5 tracks.

Dimension Correct tracks Time(normalized)
64 5 1
46 5 0.78
36 5 0.68
32 5 0.65
28 5 0.59
27 4 0.57
26 4 0.58
20 4 0.54
16 4 0.51
10 3 0.46
6 1 0.42
3 1 0.41
0 0 0.39

Figure 5. Tracks in world frame versus the camera
ground truth for no descriptor dimensions.

the PCA-SURF descriptors decreased computational
time and hence optimized tracking speed.
In this work, tracking involved the KF with GNN

data association. Tracking with algorithms that are
more robust, e.g. [2], will be the subject of a future
study and would be an important step in verifying the
results of the present work.

References

[1] H. Bay, et al.: “SURF: Speeded Up Robust Fea-
tures,” ECCV, pp.404-417, 2006.

[2] S. S. Blackman, et al.: “Design and analysis of mod-
ern tracking systems,” vol.685, Artech House Nor-
wood, MA, 1999.

[3] S. Gauglitz, et al.: “Evaluation of interest point de-
tectors and feature descriptors for visual tracking,”
IJCV, vol.94, no.3, pp.335–360, 2011.

[4] Y. Ke, et al.: “PCA-SIFT: A more distinctive repre-
sentation for local image descriptors,” CVPR, vol.2,
pp.II-506-II-513, 2004.

[5] S. D. Lin, et al.: “Combining Speeded Up Robust
Features with Principal Component Analysis in face
recognition system,” IJICIC, vol.8, no.12, pp.8545-
8556, 2012.

[6] W-L. Lu, et al.: “Simultaneous tracking and action
recognition using the PCA-HOG descriptor,” CRV,
pp.6-6, 2006.

[7] L. I. Smith: “A tutorial on Principal Components
Analysis,” vol.51, pp.52, Cornell University, USA,
2002.

[8] J. Sturm, et al.: “A benchmark for the evaluation of
RGB-D SLAM systems,” IROS, pp.573-580, 2012.

[9] S. Thrun, et al.: “Probabilistic Robotics,” MIT Press,
2005.

[10] R. E. G. Valenzuela, et al.: “Dimensionality reduc-
tion through PCA over SIFT and SURF descriptors,”
CIS, pp.58-63, 2012.

368


