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Abstract

Automatic lane detection is known to facilitate the
real-time traffic planning and identify traffic conges-
tion. In this paper, we develop a visual surveillance
trajectory clustering (VSTC) framework for automatic
lane detection. Given a surveillance video, trajecto-
ries of vehicles are extracted at first. These trajecto-
ries contain behavior of vehicles on different lanes and
are clustered by VSTC to retrieve candidate lanes. Fi-
nally, a density verification is applied to identify the
correct lanes from candidate lanes. As shown in the
experiments, our framework can identify the lanes by
using trajectories without prior knowledge.

1 Introduction

In visual surveillance, automatic lane network anal-
ysis becomes an important research topic to provide
traffic information of the road [8]. According to the
analysis results, the traffic bottleneck can be identi-
fied and automatic traffic light optimization [9] can be
performed to reduce the traffic congestion. To achieve
automatic lane network analysis, automatic lane de-
tection without prior knowledge is required.

Because GPS trajectory records of vehicles contain
locations of vehicles, learning from GPS-based trajec-
tories provides the possibility to detect lanes without
the manual interpretation [2]. However, GPS trajec-
tory records contain residual errors in meters. The
inaccurate positions of GPS trajectory records cause
false detection of lanes and limit the practical usage of
identifying lanes of roads. Moreover, parsing long-term
GPS trajectory records is time-consuming as shown in
many GPS trajectory analysis methods [2].

To achieve tracking and monitoring real-time traffic
situations in the city, we consider using video trajecto-
ries extracted from surveillance videos to detect lanes
of roads. Recently, foreground object detection and
tracking methods [5] enable the applications to auto-
matically extract moving trajectories from videos. It
becomes a cost-effective and feasible manner to analyze
moving trajectories of vehicles and pedestrians from
surveillance videos. In general, each vehicle drives on
its own lane unless it changes lanes or turns. When suf-
ficient trajectories are collected, the lanes of the roads
can be identified.

After trajectories are extracted by [5], a naive idea is
to directly apply traditional GPS-based clustering ap-
proaches [1] to segment the geographic space accord-
ing to the measurement of similar trajectories in the
Euclidean metric. The geographic area covered by tra-
jectories within the same cluster is then considered as

a lane. However, such approach will encounter the fol-
lowing problems:

• Due to the variety of the trajectory lengths, it is
difficult to utilize the Euclidean distances as the
similarity matrix between two trajectories.

• Vehicles have the speed-up intention in the
straight line but decelerate while doing the lane
change and turning. The highly diverse situations
incur the difficulty of designing the similarity mea-
surement between any complete trajectories.

To solve these problems, we propose a visual surveil-
lance trajectory clustering (VSTC) framework. In
VSTC, each moving trajectory is separated into several
disjoint vectors according to the directional changes
within a trajectory. The first step of the clustering is
to generate clusters which tend to contain vectors of
similar lengths and similar angles with close positions.
The vector-based clustering is then applied to over-
come problems in trajectory-based clustering with the
Euclidean metric. Then, we develop a novel frame-
work to hierarchically merge vector-based clusters so
that the curved lanes can also be constructed in VSTC.
Finally, a density verification is proposed to separate
mis-merged adjacent lanes during clustering.

2 Related Work

Recently, several approaches [2] aim to build road
maps based on GPS trajectory records of vehicles.
These methods mainly focus on the lane direction iden-
tification and vehicle routing analysis. Because spatial
resolutions of GPS data, these methods are difficult to
be applied to retrieve the correct number of the lanes
and the widths of each lane of the roads. To solve the
lane detection problem, Chen et al. [3] proposed us-
ing Gaussian mixture models to identify centers and
widths of lanes by assuming that the widths of lanes
are the same and the center lines of lanes are given.
However, the viewing angles of surveillance cameras
are different, resulting in that the widths of lanes may
be different. The solution in [3] cannot be used to the
case of surveillance videos. Currently, automatic lane
detection from surveillance videos remains unexplored.

In addition, many approaches [8] were proposed to
detect lanes from cameras set on vehicles for advanced
driver-assistance systems. However, these approaches
aim to detect the driving lane of the vehicle instead
of identifying all lanes of roads. Other techniques to
detect the traffic line from videos [6][7] are not the cure
of the lane detection. It is believed that the traffic line
is not always clearly revealed due to issues of the rain or
the video resolution. Many relatively small pathways
may lack for the traffic line inherently, making the line
detection infeasible. These solutions are difficult to be
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applied in the lane detection by using trajectories in
surveillance videos.

3 The VSTC Framework

The VSTC framework is proposed to automatically
identify the lane structure from trajectories of surveil-
lance videos. Initially, we apply [5] to acquire trajec-
tories of vehicles from surveillance videos. It is noted
that the extracted trajectories usually contain noisy
data, such as the false detection of dynamic back-
ground. Moreover, fragmented trajectories can also
be observed due to visual obstacles or tracking fail-
ures. Identifying lanes from these trajectories becomes
a challenging problem because these interferences are
inevitable. With the increasing number of trajecto-
ries, these noisy data are hard to be effectively and
manually filtered out. As a result, single-step cluster-
ing algorithms will be infeasible since they are difficult
to distinguish correct trajectories from noises.

To solve aforementioned issues, we design VSTC as
a cascaded framework. All trajectories, including noisy
and correct trajectories, are individually segmented
into disjoint sub-trajectories according to inertia of
moving directions. Clustering is then performed based
on sub-trajectories to obtain a large set of direction-
diverse clusters, in which noisy or disordered data will
be separated into relatively small clusters with a few
instances. Afterward, direction-diverse clusters will be
used to retrieve statistically connected clusters as can-
didates of lanes. Smaller disordered clusters will be
removed in this step. Nevertheless, two or more lanes
may be merged into the same cluster due to the over-
clustering effect. To solve the problem, a density veri-
fication process is utilized to identify correct lanes.
Trajectory Transformation We first describe the
flow to transform data extracted from videos to the
trajectory format used in VSTC. Generally, a moving
object oi identified by foreground object detection al-
gorithms [5] will be represented as a spatiotemporal
list, i.e., oi = {bbts , bbts+1

, ..., bbts+n
}, where bbtm cor-

responds to the bounding box of oi in the mth video
frame. Please note that all objects, either vehicles or
pedestrians, have different sizes of bounding boxes. We
thus transform each bounding box bbtm of oi to a rep-
resentative point pi(tm), which is the central point of
bbtm . Following the step of transformation, we have the
set of moving trajectories T , in which each moving tra-
jectory ti = {pi(ts), pi(ts+1), ..., pi(ts+n)}, representing
the spatiotemporal point list of ti.
Vector-Based Hierarchy Clustering In this step,
we focus on resolving the issue of distance measure-
ment between trajectories. Please note that moving
trajectories have variant lengths due to the moving
speed, traffic congestion, curved/straight lanes, and so
no. Motivated by the nature of inertia in the object
movement, we consider to segment each trajectory into
a set of inertial sub-trajectories. Each sub-trajectory
represents a list of sequential points with similar direc-
tions. To achieve this, we utilize the DouglasPeucker
algorithm [4] to segment trajectories into inertial vec-
tors. Due to limited space, please refer to [4] for de-
tailed implementation. In this way, when a vehicle
turns or drifts from its original lane, these situations
can still be modeled by the inertial vectors which pro-
vide the moving behavior of objects during clustering.

After applying the segmentation, each trajectory ti

is transformed into a set of sub-trajectories. To rep-
resent the sub-trajectory, a representative vector rvij ,
which is the vector computed from the head point to
the tail point of each sub-trajectory, is applied. Each
rvij is the representation for a kind of moving behav-
ior. Since the behavior of vehicles moving in the same
lane should be consistent, to apply clustering on rep-
resentative vectors is an effective way to identify the
lane structure. In general, a surveillance video may

Algorithm 1 Directional Partitioning of Representa-
tive Vectors
Input: Representative vector list RV = rv1, ..., rvi, ..., rvi, where

i is the total number of trajectories; angle range r to decide the
directional sub-groups;

Output: Directional sub-groups Sg ;
1: Sg = (Sg1

, Sg2
, ..., Sgm ), where m = 360

r
;

2: vectorStandard = (0, 0, 0, 1);
3: for each rvi ∈ RV do

4: for each rvij
∈ rvi do

5: calculate θ between rvij
and vectorStandard;

6: add rvij
to Sgm , where m = ( θ

r
)%n + 1;

7: return Sg

contain more than ten thousands of trajectories. The
calculation of the pair-wise similarity between all rep-
resentative vectors is very time-consuming. In VSTC,
we are inspired that the moving direction of represen-
tative vectors within a local region should be orderly,
i.e. vectors are spatially separated based on the di-
rections. To reduce the computational complexity, we
devise the VSTC framework as a cascaded cluster-
ing methodology. The first step of the clustering is
to generate clusters which contain directionally simi-
lar vectors. Then, clusters are merged by considering
the connectivity between clusters to identify the spa-
tial properties of clusters, such as clusters contain long
or curved shapes of trajectories. Because noisy vectors
are disordered, the size of clusters of noisy vectors will
be small. Thus, clusters of noisy vectors are difficult
to be merged when considering the connectivity with
other clusters. Finally, the geographic shapes of these
large clusters are transformed to the areas of lanes and
form the candidate lanes for verification. We outline
the details of the cascaded algorithms in Algorithm 1
and Algorithm 2, respectively.
Definition 1. Given a list of represented vectors
RV = {rv1, rv2...,rvn}, the dominant direction of RV
is defined as:

dir(RV ) =
rv1 + rv2 + ...+ rvn

size(RV )
.

Lane Detection based on Density Verification
After the cascaded clustering algorithm, a set of clus-
ters is obtained. Each major cluster possibly represents
trajectories on a lane because these trajectories have

Figure 1: The illustration of density verification for adjacent lanes.
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Algorithm 2 Vector-based Cascaded Clustering

Input: vector list Sgi
∈ Sg and Sgi

= (rv1, rv2..., rvn); threshold
ϑm for the maximal spatial distance for two vectors; threshold
θm for maximal angle for two vectors;

Output: cluster sets: C = (C1, C2,...,Cn)
1: initialize each rvj ∈ Sgi as a cluster cj ;
2: C.Add(cj);
3: while size(C) > 0 do

4: for each pair (cx,cy) do

5: compute VSimilarity(cx, cy, ϑ, θ);

6: find the pair P=(cx, cy) with the highest VSimilarity;
7: if P= ∅ then

8: break;
9: else

10: merge cy into cx;
11: C.remove(cy); C.update(cx);

12: P=(c1, c2);
13: while P �= ∅ do

14: for each pair (ca,cb) ∈ C do

15: compute CD(ca, cb) : dis(RVa, RVb) = min(|RVa.tail−
RVb.head|or|RVb.tail − RVa.head|);

16: find the pair P=(ca, cb) with the minimum connected dis-
similarity CD(ca, cb);

17: merge ca into cb;
18: C.remove(ca); C.update(cb);

19: return C

Algorithm 3 VSimilarity: Direction Similarity

1: procedure VSimilarity(cx, cy, ϑ, θ)
2: θ =angle(rvx, rvy);
3: if θ < θm then

4: Set rv′ =
−−−−−−−−−−−−−→
rvy.startPos, rvx;

5: crossV alue = rv′ × rvy;

6: dist =
|crossV alue|
lengrh(rvy)

;

7: if dist < ϑ then

8: return dist
9: else

10: return NULL

similar behavior and move at the same spatial direc-
tions. However, the cluster is likely to merge trajecto-
ries from two or more adjacent lanes because trajecto-
ries have the same direction and objects move across
these lanes frequently. In addition, each cluster may
still contain noisy trajectories which will reduce the
precision of our lane detection results. To solve these
problems, a density verification process is proposed to
refine the lane detection results of the vector-based cas-
caded clustering.

Although trajectories in each cluster may contain
noisy trajectories, the dominant moving directions of
vehicles in a lane, which are identified by Definition 1
with the average of directional factors, can smooth the
side-effect from noises. The dominant moving direction
is determined to decide the direction when segmenting
the cluster of more than two lanes. The next step is to
quantify the frequency of every spatial grid by count-
ing the number of vectors passing through the grid.
As illustrated in Figure 1, the valley shows that there
are few vehicles passing through the grid. By verify-
ing the linkage among valleys, the boundary between
adjacent lanes can be identified. Sometimes irregular
moving behavior may move outside the boundary of
lanes, causing clusters are enlarged due to the outlier
effect. When we statistically remove exterior grids of
the cluster with the less frequency, outliers in each clus-
ter are also filtered. The process of density verification
is outlined in Algorithm 4.

4 Experimental Results

In the experiments, three surveillance datasets were
used. The video lengths, numbers of trajectories (|T |)

Algorithm 4 Density Verification

Input: cluster ci; grid list CB of ci; frequency list of grids SUP of
ci;

Output: dominant moving vector dv of ci
1: D =FindDenseRegions(CB);
2: pi=select top Dense element from D and get the list of separa-

tion point;
3: for each cbi ∈ CB do

4: if IsDenseRegions(cbi, supi) then

5: DR.add(cbi);

6: calculate dv
7: for each cbi ∈ CB do

8: if WhichGrid(cbi) /∈ DR & IsOutlier(cbi) = ture then

9: remove(cbi);

10: return dv, pi

and the resolutions of each dataset are shown in Table
1. The trajectories of vehicles were acquired by [5] in
advance. The implementation of VSTC is based on
JAVA on a 3.40 GHz Core i7 machine with 4 gigabytes
of main memory, running on the Windows 7.

In the experiments, we show the lane detection re-
sults of the vector-based cascaded clustering and the
density verification, respectively. The scene of video
1 shown in Figure 2(a) contains two curved lanes.
The extracted trajectories in points after representa-
tive vector sampling are shown in Figure 2(b). Due
to false foreground object detection of dynamic back-
grounds such as waving trees, many noisy trajectories
can be observed in Figure 2(b).

After applying the vector-based cascaded clustering,
two dominant clusters were obtained as shown in Fig-
ure 3(a) and Figure 3(b), respectively. Although two
dominant lanes in video 1 are detected, the areas of the
lanes are enlarged unexpectedly. This is because some
external noises generated from foreground extraction
or irregular moving trajectories were merged into the
major clusters. Moreover, the over-clustering effect is
the inherent issue during clustering. As a result, the
density verification is necessary to overcome the dis-
advantages mentioned above. As shown in Figure 3(c)
and Figure 3(d), the shapes of detected lanes are more
precisely to match the real lane range line drawing on
the ground. With more trajectories, the results of the
proposed approach can be more accurate.

Table 1: Summary of surveillance datasets

Dataset video 1 video 2 video 3
Video Length 72 min. 58 min. 50 min.
|T | 42518 51774 72109
Resolution 370 × 480 720 × 480 857 × 481
Exec. time 905 sec. 697 sec. 1162 sec.

The results of lane detection in video 2 are shown
in Figure 4(a) and Figure 4(b), respectively. This case
shows that VSTC can precisely achieve the lane de-
tection when the lane shape diversifies vertically due
to the effect from visual angles. As shown in Figure
4(a), the small horizontal lane without traffic lines can
still be identified. Moreover, multiple vertical lanes
(marked by different colors) of the road can also be
identified as shown in Figure 4(b).

The results of lane detection for video 3 are shown in
Figure 5(a) and Figure 5(b). The surveillance camera
captured the cross road from a high building to provide
the bird’s eye view of roads. Visual obstacles from trees
lead to break the detection of a moving trajectory when
performing the foreground object tracking. The result
in Figure 5(b) shows that clustering by connectivity
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(a) Background frame (b) Extracted traj. data

Figure 2: The background scene of video 1.

(a) Detected right lane (b) Detected left lane

(c) right lane (d) left lane

Figure 3: The lane detection after vector-based cascaded clustering.

(a) Detected horizontal lanes (b) Detected vertical lanes

Figure 4: Results of lane detection in video 2.

(a) Detected horizontal lanes (b) Detected vertical lanes

Figure 5: Results of lane detection in video 3.

(in the second step of vector-based cascaded cluster-
ing) is able to partially resolve the problem if clusters
can be spatially connected, and lanes can be precisely
separated. In Figure 5(a), the detected lanes are bro-
ken because trajectories of clusters are not spatially
connected. To resolve this, checking the spatiotempo-
ral relationship between trajectories is necessary, which
will be one topic of our future studies.

5 Conclusions

In this paper, we propose a novel VSTC framework
for lane detection from surveillance videos. By consid-
ering the vector-based hierarchical clustering and the
dense verification of trajectories, the lanes of roads can
be identified. In the future, we will focus on linking
broken trajectories due to visual obstacles. Moreover,
we will apply the proposed method to detect lanes of
more complicated scenes, such as roundabouts, and
system interchanges with different ways.
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