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Abstract 

Recent years have shown increases in virtual 3D percep-
tion and applications, many of these applications require 
3D model reconstruction from high quality LIDAR scans. 
High quality 3D models may be acquired from a collection 
of overlapping LIDAR scans which need to be registered or 
aligned to a common coordinate system. This paper inves-
tigates the use of a novel implementation of trilateration for 
correspondence rejection in highly accurate 3D point cloud 
registration. It is shown that from a synthesized corre-
spondence set of size 100 containing 85% outliers, all or 
most of the remaining 15% inliers can be retrieved. The tri-
lateration problem is solved for all 4-combinations of 
correspondence elements from which the true correspond-
ence subsets are easily identifiable. It is also shown that 

rformance may be greatly affected by noisy 
distance measurements, however the method works well for 
distance measurements typically acquired by LIDAR sys-
tems. Lastly, unnecessarily large sizes of correspondence 
sets can quickly make the method computationally expen-
sive if all combination subsets require to be evaluated. 

1 Introduction 

A common need in computer vision and pattern recogni-
tion is to compute the 3D rigid body transformations that 
align two or more point clouds. The process of placing two 
or more 3D data sets or point clouds in the same coordinate 
system is a crucial step for the accurate reconstruction of 
3D models for applications in architecture, gaming, medi-
cal imaging, heritage conservation, robotics and industrial 
automation. 

Point clouds can be captured by a number of technolo-
gies, including depth cameras and terrestrial LIDAR 
scanners. LIDARs can capture scenes in high resolution 
and also tend to be very accurate (around mm at 

m) with some models able to also capture colour. Sub-
sequently such scans can be registered with greater 
accuracy than what might be achieved with data captured 
from other less accurate devices. Also, since high-accuracy 
and high-resolution scanners must be stationary during 
each scan, their usability and utility rely on accurate regis-
tration. 

There exist a number of methods to automatically regis-
ter point clouds, one of the most popular and prominent in 
the literature is feature-based registration. This process re-
quires the detection of features followed by a description 
(or feature vector) of each feature. The description allows 
the estimation of correspondences between multiple scans. 

Correspondence estimation is typically paired with corre-
spondence rejection to ensure only true corresponding pairs 
of points are selected for reliable transformation estimation 
and ultimately, robust and accurate registration. 

Robust descriptor and correspondence estimation algo-
rithms are able to identify corresponding pairs of points 
captured at different positions and orientations; conse-
quently, this also means that similar but non-corresponding 
points are likely to be incorrectly matched. This problem is 
particularly pertinent in indoor computer vision applica-
tions where many indistinguishable features such as tiles, 
switches, lighting and various other features are observed.  

The final steps of the registration process can be greatly 
and negatively impacted by spurious correspondences, and 
subsequently rely heavily on correspondence rejection al-
gorithms. Unlike feature extraction and description, there 
are only a handful of methods commonly implemented for 
correspondence rejection. Popular methods such as RAN-
SAC [1] are discussed below and a novel implementation 
of trilateration for correspondence rejection is also pro-
posed. 

1.1. Correspondence Rejection 

Correspondence rejection is a vital step in the registra-
tion process and there exist a number of commonly used 
methods [2], [3]. Distance-based rejection removes corre-
spondences which are beyond a certain distance; trimmed 
correspondences retain a percentage of the best determined 
correspondences dependent on the metric of the descriptor 
and reciprocal rejection retains only those correspondences 
for which the query point is the best match for the matching 
point. Although these methods remove correspondences of 
poor quality, they do not actively remove incorrectly 
matched correspondences (outliers), and undesirably they 
may also remove inliers. Active outlier removal can be 
achieved using robust estimators. 

Robust estimation can accurately compute model param-
eters from a data set containing a significant portion of 
outliers. The RANSAC algorithm is possibly the most 
widely used robust estimator in computer vision; it is an 
iterative and non-deterministic method in which the results 
are agreed by a certain probability which increases with it-
erations. 

In general, RANSAC requires a certain model for which 
model parameters are estimated and a cost function is eval-
uated to determine the quality of the fitted model. The 
model used by RANSAC for correspondence rejection in 
3D point cloud registration is a transformation estimation 
(translation and rotation) which can be efficiently evaluated 
by a number of closed form solutions [4] [7] whereby the 
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cost is determined by the residual distance between corre-
sponding points. 

In this paper we explore the use of trilateration for cor-
respondence rejection. Trilateration is typically used to 
solve localisation problems for positioning systems, navi-
gation and tracking, but here we extend this for the 
application of correspondence rejection. 

2 Trilateration 

Trilateration is the process of determining the position of 
a point by distance measurements using the geometry of 
spheres in this case; there exist a number of methods to ro-
bustly estimate this position [8] [11]. 

If it is known that a point lies of the surface of three 
spheres, the centres and the radii provide sufficient infor-
mation to narrow possible locations down to no more than 
two (unless the centers lie on a straight line). A fourth 
sphere or other conditional information can be used to de-
termine which of the two possible positions the correct 
location is. 

A LIDAR scans a scene from two locations,  and , 
which are respectively called scan M and scan D. Scan M 
and D also have feature points  and  where  is the in-
dex of the feature point. Features are extracted from the two 
scans and correspondences are identified. The distance 
from the scanner to each feature point is calculated/known 
from scan M. 

For each distance measure evaluated, a sphere with a ra-
dius of that distance is considered for the corresponding 
points in scan D. The position of , in relation to , is then 
determined by the intersection of the four spheres. 

The equation of a sphere is given by (1), where 
 define the centre of the sphere and  is the ra-

dius of the sphere. 

 
In our case the center of a sphere is determined by a fea-

ture point which has a corresponding feature point , 
and the radius is given by the distance between  and the 
origin, . Since, the origin of  is arbitrary, for 
simplicity we choose . This simplifies the squared 
radius of the  point to . As a result the new equa-
tion for a sphere is then given by (2) and illustrated by 
Figure 1 where the subscripts denote the correspond-
ence/feature index and the ,  or  component. 

 

 (2) 

 
There are 3 unknowns , so a system of least  

equations are required to determine a solution, and at least 
a system of  equations to determine a single solution. In 
practise, there are many more than  constraints. With 
more than constraints, the system is over-determined; 
exact solutions can be found, though with the inclusion of 
noise in real systems, it may be that no exact solutions exist. 
The alternative is to seek approximate solutions.  

The system of non-linear equations (where  is the 
number of corresponding features) can be transformed into 
a system of  linear equations which can be ex-
pressed as a simple linear system (3) in which  is the 
unknown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 

 
The system of non-linear equations can be formed into a 

linear system (planar equations) by subtracting an arbitrar-
ily chosen  constraint from the  constraints where 

: 
 

 

(4) 

 
With  arbitrarily chosen to be  such that , 

where . The linear system (3) can be expressed 
by (5)-(7). 

 

 (5) 

 (6) 

 (7) 

 
Least squares minimization methods are notoriously in-

effective with the inclusion of anomalies. In order to be able 
to robustly identify the correct position of the scanner, we 
adopt the methodology of Nishida et al. [10] with slight 
modifications. We solve for systems of  equations (which 
requires  corresponding points where the th element of 
the subset is the  constraint) as opposed to a single sys-
tem of  equations.    

The solution to each system produces a three-dimen-
sional Cartesian point, this complete collection of points 
will from here on be referred to as the trilateration set. If a 
subset contains only true correspondences, the solution of 

 (1) 

Figure 1. The two-dimensional position of scan M 
is identified in relation to scan D using a system of 
three equations for a circle which are similar to 
(2). 
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this system will correctly estimate the position of the scan-
ner and will coincide with other truly corresponding subsets. 
As more true subsets are evaluated, the accumulation of 
their results will form a dense cluster. If a subset contains 
one or more spurious correspondences, its result will likely 
not coincide with the correct position and will not belong 
to the dense cluster. Spurious correspondences may easily 
be identified as those which repeatedly produce points 
which do not belong to the dense cluster.  

Given that there are  correspondences and that subsets 
of only  elements are required, the total number of sub-
sets is given by: 

 

 (8) 

 
A large number of elements in the correspondence set 

can produce a very large trilateration set and can make this 
method increasingly computationally expensive. However, 
with RANSAC being introduced over  years ago and 
computation power exponentially increasing since then, 
evaluating for all subsets and analyzing the trilateration set 
in its entirety is feasible and may also produce information 
not readily available otherwise. 

3 An Example  

Two randomly generated point sets which share a certain 
number of identical/cloned points are used as correspond-
ence test data. The cloned points represent true 
correspondences (inliers) while the rest of the points are 
considered spurious (outliers). 

The random point sets lie within a sphere of radius  
metres and are generated from a uniform distribution. Ad-
ditionally, the points from both sets are perturbed by a 
normally distributed variable . A standard 
deviation of m used for the test case is an overesti-
mation of terrestrial LIDAR range error which can be up to 
around  or more times smaller. Lastly, the second point 
cloud is translated by , therefore its position 
in relation to the first point cloud is . 

Trilateration sets are evaluated for varying number of in-
liers and is plotted as a histogram which intuitively shows 
the dense cluster formed by the subsets describing only true 
correspondences as a narrow and tall peak. With a large 
number of inliers, a very prominent narrow peak is ex-
pected. 

Additionally, the trilateration set of three correspondence 
sets of size  containing only inliers with varying levels 
of noise are also evaluated. The three sets are also respec-
tively translated by ,  and  in the -direction. 
Noisier points sets are expected to have shorter and wider 
peaks. 

4 Results and Discussion 

Trilateration sets are evaluated for 30, 15 and 10 inliers 
out of 100 correspondences. Their respective histograms 
for the -component are shown by Figure 2, Figure 3 and 
Figure 4 (similar results can be observed for - and -com-
ponents). 

From the three cases, a distinct peak can be observed for 

the case of 30 and 15 inliers. The peak directly corresponds 
to the position of scanner  in the coordinate system of 
scan D. 30 and 15 are considered to be a relatively small 
number of inliers, however the density of the cluster formed 
by the true correspondences can still be overwhelming if 
the number of inliers in sufficient.  

The peak in Figure 2 is significantly more distinct than 
the peak from Figure 3. Although there are only 15 more 
inliers, according to (8) the dense cluster in the trilateration 
set has around 20 times as many points. 

As for the case of 10 inliers, no outstanding peak can be 
distinguished and determining the true set of correspond-
ences would not be possible for this particular case; a 
distinct peak can be observed for systems with reduced 
noise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Understandably if RANSAC was used, instead of ex-

haustively computing of all subsets, the likelihood of 
selecting a true subset is extremely low and RANSAC iter-
ations may be curtailed before a good model can actually 
be found. The approach used here to analyze the entire tri-
lateration set in order to determine the correct solution is 
shown here to be extremely resilient. 

Figure 5 shows how the distribution of the trilateration 
set varies with noise. The consideration of noise in this 
method is crucial. If the noise is too large, the height of the 
peak is dramatically reduced which may be difficult to re-
cover if the correspondence set is heavily contaminated. 

Furthermore, peaks observed in complete trilateration 
sets are independent of the spurious correspondences. This 

0

5

10

15

20

25

30

35

40

45

50

-20 -15 -10 -5 0 5 10 15 20

F
re

q
u

en
cy

T
h
o
u
sa

n
d
s

X-Component (m)

Figure 2. Histogram of x-component of trilateration 
set with bin width 0.05m. 100 correspondences, 30 
inliers with normally distributed noise: 
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Figure 3. Histogram of x-component of trilateration 
set with bin width 0.05m. 100 correspondences, 15 
inliers with normally distributed noise: 

. 
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means that the correct position of the scanner may be deter-
mined confidently with a sufficiently high number of true 
correspondences regardless of the number of spurious cor-
respondences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Additionally, it should be noted that even a small in-

crease in the number of true correspondences can make 
drastic differences in the trilateration set if the narrow peaks 
are indeed independent of spurious correspondences. For 
example, for the case of  true correspondences, there 
exist  possible combinations (8). Increasing the num-
ber of true correspondences by only one results in  
combinations (8), over  more which would result in 
a significantly taller peak in the trilateration set. 

5 Conclusion 

Trilateration for correspondence rejection is shown to be 
very robust by being able to identify the correct position of 
the scanner with great confidence when the correspondence 
set is highly contaminated. Moreover, the method shows 
promise in scenarios where the correspondence set is con-
taminated by even greater magnitudes if the number of 
inliers in sufficiently high. It succeeds in cases where RAN-
SAC is likely to fail due to a very low probability of 
selecting a true subset. 

Two drawbacks of the method are its susceptibility to 

noise and lengthy computation time if the correspondence 
set is large (8). For the case of LIDAR scanners, the noise 
in distance measurements does not pose a serious problem 
though for other noisier scanners it may. With regards to 
computation time, a correspondence set of around  
points produces a trilateration set of around  million 
points which is very similar to the size of a typical scan and 
so the trilateration set is very manageable. Typically, this 
many correspondences are more than enough to reasonably 
estimate transformation. 

To improve performance, additional approximate infor-
mation such as scanner height, distance between scanners 
and size of the scanned scene may be used to refine the tri-
lateration set to remove obvious outliers without the need 
for other difficult-to-obtain problem specific thresholds. 

The method is still in its early stages and requires further 
testing and analysis is required to better understand effects 
of noise and percentage of inliers; identify strengths and 
weaknesses in comparison to other popular correspondence 
rejection methods such as RANSAC and to also test with 
real data. 
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Figure 5. Histogram of -component of trilatera-
tion set with bin width m.  sets of  
correspondences with no outliers and with varying 
levels of noise and translation. From left to right: 
(a) , (b)  and (c) 
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Figure 4. Histogram of x-component of trilateration 
set with bin width 0.05m. 100 correspondences, 10 
inliers with normally distributed noise: 
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