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Abstract

This paper provides a geometrical aspect of Fisher’s
linear discriminant analysis (FLDA), which has been
widely used owing to its simple formulation and low
computational costs. Our approach is based on a new
framework of pattern recognition that can be modelded
by a communication of class information. This model
is quite different from a commonly used framework of
pattern recognition as a mapping from the set of pat-
terns to the set of classes. In the new framework, pat-
terns can be regarded as class information with redun-
dant encoding. We show that the geometry of two class
FLDA can be described via communication theory of
noisy channel.

1 Introduction

Fisher’s linear discriminant analysis (FLDA) [7] has
been widely used as a discriminative feature extractor
in the fields of pattern recognition, computer vision
and machine learning [3, 10] for a long time owing to
its simple formulation and low computational costs.
Lots of extensions and modifications of FLDA have
ever been proposed [2, 5, 8, 9, 11, 12, 13, 14, 15], and
these FLDA-based methods suggest that FLDA is a
fundamental and important method in pattern recog-
nition. Therefore, to understand geometries of pattern
recognition, understanding a geometry of FLDA is very
important. Then, this paper provides a geometrical as-
pect of two class FLDA by a new framework of pattern
recognition.

Our new framework of pattern recognition is inspired
by the communication theory [1, 4]: We regard pattern
recognition as a communication of class information on
a noisy channel, in contrast to a common framework
of pattern recognition as a mapping from a pattern
space consisting of spatial/temporal data such as im-
ages and sounds, into class space. In the framework,
pattern recognition is regarded as a mapping from a
pattern into what a pattern represents that belongs
to some discrete class. Usually, the dimension of pat-
tern space is very large, mean while the dimension of
class space is small. Therefore, pattern recognition as

a compressive mapping from redundant pattern space
into concise class space can be viewed as dimensional
reduction and/or information compression. In the con-
text of pattern recognition, the mapping from pattern
space to class space should be carefully constructed to
achieve high recognition rate. This mapping is gener-
ally decomposed of two steps: one is from a pattern
space into a feature space, and the other from a fea-
ture space into a class space, which is called “feature
extraction” in general.

This paper gives a new framework of pattern recog-
nition from the point of view of communication theory.
In a common, framework of pattern recognition, a pat-
tern space is the basis of theoretical analysis, mean-
while in our framework, a class space plays a central
role in the analysis. Every class as an element of a class
space is given a priori, and a pattern can be regarded
as class information with redundant encoding. Pattern
recognition is a process of decoding observed patterns
with channel noises into class labels by projecting it to
small dimensional space (Fig. 1). The image of a pat-
tern should have discrete values, however, noise con-
tamination makes it continuously. Then, each label is
embedded to a continuous space and the value of con-
tinuous label is regarded as a label likelihood. This
leads to a new framework of pattern recognition, such
that pattern recognition can be regarded as communi-
cation of the class label, then, pattern recognition can
be understood in the framework of the communication
theory.

Class space

↓Redundant encoding

Pattern space

↓Compressive decoding

Class (Label) space

Figure 1. Proposed pattern recognition process.
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Making use of the above idea, we can understand two
class FLDA from the point of the view of information
geometry.

2 Fisher’s linear discriminant analysis

In this section, we explain FLDA, which is a linear
method of supervised learning. FLDA projects data
into a small dimensional space by emphasizing the sep-
arability of classes, that is, the data belonging to the
same class would be located near and the data belong-
ing to the different classes would be located far.

Assuming that N data are classified to C classes.
Let nc be the number of data classified to the class

c, and they are named x
(c)
1 , . . . ,x

(c)
nc (N =
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respectively. Here, μ(c) and Σ
(c)
W are called a class

mean and a within class variance, respectively.
Let the mean μ and the variance-covariance matrix

ΣT of all data be
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respectively. Let ΣW, called a within-class variance,
be the average of the variance-covariance matrix of ev-
ery classes, and let ΣB, called a between-class variance,
be the variance-covariance matrix when all data is as-
sumed to concentrate to the mean of a corresponding
class. These are represented by

ΣW =
1

N

C∑
c=1

ncΣ
(c)
W , (1)

ΣB =
1

N

C∑
c=1

nc

(
μ(c) − μ

)(
μ(c) − μ

)�
,

respectively. Then, there holds ΣT = ΣW +ΣB.
We consider two class FLDA. In this case, data are

projected (compressed) to a 1-dimensional linear space
spanned by w �= 0. For projected data, there holds

w�ΣTw = w�ΣWw +w�ΣBw .

In the discrimination, a between-class variance is
more important than a within-class variance. Then,

w is chosen to maximize the ratio w�ΣBw
w�ΣWw

, and w is

explicitly given in the form

w = Σ−1
W

(
μ(1) − μ(2)

)
, (2)

by solving a general eigenvalue problem as the eigen-
vector corresponding to the largest eigenvalue of the
matrix Σ−1

W ΣB.

3 Overview of communication theory

In this section, we overview the communication the-
ory [1, 4].

3.1 Entropy and transinformation

Let X be a random variable of a signal x generated
by a probability density function (pdf) pX(x) The
ambiguity of signal is measured by the entropy of X
as H(X) = − ∫

pX(x) log pX(x)dx.
For two random variables X and Y corresponding

to signals x and y, respectively, the joint entoropy of
the pair X and Y and the conditional entropy of Y
given X are defined by
H(X,Y ) = − ∫

pX,Y (x,y) log pX,Y (x,y)dxdy, and
H(Y |X) = − ∫

pX(x)pY |X(y|x) log pY |X(y|x)dxdy,
respectively, where the pair x and y are generated

by the pdf pX,Y (x,y), and pY |X(y|x) =
pX,Y (x,y)

pX(x)

be the conditional pdf of y given x. Let I(X,Y ),
called a mutual information of X and Y , be defined
by the difference of entropies (signal ambiguity) as
H(Y ) − H(Y |X) = H(X) − H(X|Y ). The mutual
information gives the common information between X
and Y , and it equals 0 when X and Y are independent
one another.
Let a signal y be a transmitted signal of x contam-

inated by a noise n through continuous channel (the
channel transmits continuous signals), that is, there
holds y = x + n. Because of the noise, x cannot be
exactly restored by y. Let X and N be random vari-
ables of a signal x and a noise n, respectively. We as-
sume X and N are independent. The loss of informa-
tion due to noise is H(X|Y ) = H(N), then, transmit-
ted information of X equals to the mutual information
J = I(X,Y ). Then, J is also called transinformation
from the point of view of data transmission.

3.2 Riemannian signal space

Let a noise vector n be an additive Gaussian noise of
mean 0 depends on the signal x, that is, the conditional
pdf of n given x be

pN |X(n|x) = A(x) exp

{
−1

2
n�V −1(x)n

}
(3)

be holds, where V (x) be the variance-covariance ma-
trix of n given x, and A(x) = (2π)−n/2(detV (x))−1/2

be a normalization factor.
By the noise, signals are shifted, and the way of

shift of signals can be represented by the ellipsoid
n�V −1(x)n = const., which corresponds to Gaussian
noise as large (small) noise is incident to the direc-
tion along long (short) axis. The metric in the sig-
nal space is defined by the characteristic of the sig-
nal shift as the square of an infinitesimal distance
between two signals x and x′ = x + dx is repre-

sented by ds2 = {d(x,x′)}2 = dx�G(x)dx, where
G(x) = 1

nV
−1(x) and n is the dimension of the signal

space. The matrix G(x) is called a Gramian matrix.
It is called a Riemannian space that the space where
the Gramian matrix is defined at all points. When the
signal space is a Riemannian space, the space is called
a Riemannian signal space.
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By the Gramian matrix, the square-length of the
noise vector n is n�G(x)n. Therefore, the average

of the square-length is n�G(x)n = tr[G(x)V (x)] =
1
ntr[I] = 1, where I is the identity matrix. Then, the
metric is defined so that the average of the noise-length
equals to 1. When the dimension of the signal space
is sufficiently large, the noise-length is 1 for almost all
noise because of low of large number. That is, almost
all signals are shifted to be on the unit hypersphere of
center x. The unit hypersphere is called a noise hy-
persphere. Note that the shape of a noise hypersphere
is depend on the signal x.

When Gaussian noise vector n is sufficiently small,
by neglecting higher order term, H(X|Y ) is approx-
imated by H(N |X) [1], transfinformation is approxi-
mated by J = H(X)−H(N |X).

Let g(x) be detG(x), there holds

pN |X(n|x) =
( n

2π

)n
2 √

g(x) exp
{
−n

2
n�G(x)n

}
,

and therefore the entropy of noise at x in signal space
is computed by using Eq. (3) as

H(N |x) = − log
(
bn
√
g(x)

)

where bn =
(

n
2πe

)n
2 . Then, the average transinforma-

tion of the signal space is

J = H(X)−H(N |X) =

∫
pX(x) log

bn
√
g(x)

pX(x)
dx .

Because the average transinformation depends on
pX(x), we control pX(x) to maximize the average
transinformation in order to realize the best signal
transmission. The maximized average transinforma-
tion satisfies the condition I = maxpX(x) J , and the
value I is called a channel capacity of the signal space.
By Lagrange’s multiplier method, the channel capacity
can be exactly obtained as

I = log(bnU)

where U =
∫ √

g(x)dx at pX(x) = 1
U

√
g(x). Because

the volume of the noise hypersphere is π√
g(x)

,
√

g(x) is

inversely proportional to the volume of the noise hyper-
sphere, that is, proportional to the number of the noise
hypersphere packed in the neighborhood of x. U is the
average of

√
g(x) over the signal space. Therefore, bnU

represents the number of the noise hypersphere packed
in the signal space, and then, the same number of sig-
nals can be correctly discriminated. Consequently, the
channel capacity is equivalent to the logarithm of the
number of the noise hypersphere.

3.3 Imbedding/reduction mapping

In this subsection, we explain a continuous channel as
a sequential mapping in the signal space (Fig. 2). At
First, signals in a Riemannian signal space Sn is re-
dundantly encoded as elements in a high dimensional
channel signal space Sm. The elements in Sm are con-
taminated by noises. After that, noise-contaminated
signals in Sm are decoded as elements in Sn. For the

Signal space Sn

↓Encode by an imbedding mapping M

Channel signal space Sm

↓Decode by a reduction mapping M ′

Signal space Sn

Figure 2. Channel model.

sake of clearity, we note Sn as the Riemannian signal
space consists of decoded elements.
To utilize the channel efficiently, the best imbedded

mapping M : Sn → Sm, and the best reduction map-
ping M ′ : Sm → Sn, should be chosen carefully.
Let f be a mapping from x ∈ Sn, into y ∈ Sm.

The mapping y = f(x) is called an imbedding map-
ping. The mapping f(x) is locally linearized by dy =

T (x)dx, where T (x) = ∂f
∂x . Here, T is called a tangent

matrix because the set of T ’s columns is the basis of
the tangent space of y = f(x).
On the other hand, the signal y is inversely trans-

formed to signal x ∈ Sn. Let h be a mapping from y
into x. The mapping x = h(y) is called a reduction
mapping. The mapping h(x) is locally linearized by
dx = R(y)dy, where R(y) = ∂h

∂y . Here, R is called a

reduction matrix. Note that R(x)T (x) = I holds be-
cause the decoded signals should be the same as the
original.
Let a noise m in Sm be sufficiently small, then

h(y+m) = x+R(x)m holds. Then, the noise in Sn is
represented by n = R(x)m. Then, if the noise satisfies
R(x)m = 0, x is correctly decoded by the reduction
mapping. Note that the set of m constructs the null
space of R(x), and the reduction mapping h locally
projects y into Sn along the null space of R(x).

3.4 Optimal reduction mapping

Let a noise m in Sm be an additive Gaussian noise of
a mean 0 and a variance-covariance matrix V (y).
By introducing a Gramian matrix at y in Sm as

F (y) = 1
mV −1(y), Sm can be regarded as a Rieman-

nian signal space. The Gramian matrix in Sm provides
the metric in Sn as G = m

n (RF−1R�)−1, since the

mapping from Sm into Sn is the reduction mapping
R. To realize an efficient transmission, the channel ca-
pacity I = log{bn

∫ √
g(x)dx} should be maximized,

that is, g(x) should be maximized.
The reduction mapping which maximize g(x) is

called an optimal reduction mapping and the decoding
by the optimal reduction mapping is called an opti-
mal signal extraction method. By Lagrange’s multiplier
method, The optimal reduction mapping is derived as

R̃ =
m

n
G̃−1T�F .

where G̃ =
m

n
T�FT

(
=

m

n

(
R̃F−1R̃�

)−1
)
, and this

is the pdf of noise in Sn under the optimal reduction

mapping. The G̃ is called an optimal Gramian matrix.
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It is known that the optimal Gramian matrix is pro-
portional to Fisher information matrix for estimating
x from y.

4 Geometry of two class FLDA

In this section, we explain the geometry of two class
FLDA, which is equivalent to the optimal reduction
mapping in the context of communication theory.

Let patterns be probabilistically generated from a
pdf p(x; s), which is a mixture of two pdfs p1(x) and
p2(x) at a rate of 1−s

2 : 1+s
2 as

p(x; s) = 1−s
2 p1(x) +

1+s
2 p2(x).

Let pi(x)’s are assumed to be a Gaussian distribu-
tion of mean μ(i), the mixture p(x; s) is also a Gaussian

distribution of mean μ = μ1+μ2

2 + sμ2−μ1

2 . Then, the

mixture rate s can be computed by s = 〈2μ−(μ1+μ2)|μ〉
〈μ2−μ1|μ〉

from μ, where 〈·, ·〉 represents the inner product of two
vectors. The value s is firstly defined as the mix-
ture rate of two pdfs. However, for a given sam-
ple x, we can give another meanings for the value

s(x) = 〈2x−(μ1+μ2)|x〉
〈μ2−μ1|x〉 as a “label likelihood” of the

x, which gives the suitable pdf for the x.
In our new framework, the imbedding mapping and

the reduction mapping is set to x = f(s) and s = h(x),
respectively, as follows:

x = f(s) =
μ1 + μ2

2
+ s

μ2 − μ1

2
∈ S2, (4)

s = h(x) =
〈2μ− (μ1 + μ2)|x〉

〈μ2 − μ1)|x〉
∈ S1 . (5)

As mentioned before, there holds s = h(f(s)) when
there are no noise. However, the channel is contami-
nated by noise, and the observed signal x equals to the
sum of the truth x0 and the noise m as x = x0 +m
Therefore, an observed (transmitted) label likelihood is
the sum of the true label s and the noise n as s = s0+n
Then, discrete label s ∈ {−1, 1} is transmitted to a
continuous label likelihood s ∈ S1 = R.

We assume the distribution of m does not depend
on the points in S2. This assumption corresponds the
homoscedasticity assumption in FLDA (All variance-
covariance matrix of classes could be replaced to the
same variance-covariance matrix by Eq. (1)). We also
assume that noise m follows a Gaussian distribution
with a mean 0 and a variance-covariance matrix V .
Under these assumptions, the Gramian matrix in S2 is
computed as F = 1

2V
−1.

From Eq. (4)-(5), the tangent matrix T and the re-
duction matrix R are obtained as

T =
∂f

∂s
=

μ2 − μ1

2
,

R =
∂h

∂x

�
=

1

〈μ2 − μ1|x〉
(4x− μ2 − μ1)

�

− 〈2x− μ1 − μ2|x〉
〈μ2 − μ1|x〉2

(μ2 − μ1)
� .

Here, R depends on s and s should be determined so
as to maximize the channel capacity of the label trans-
mission. Consequently, the optimal reduction matrix

R̃ is given as

R̃ = 2G̃−1T�F =
1

2det G̃
(μ2 − μ1)

�V −1 .

By comparing (2det G̃)R̃� = V −1(μ2 − μ1) with
Eq. (2), the maximization of channel capacity in trans-
mitting class labels results in FLDA since V = ΣW and
μc = μ(c)(c = 1, 2). Then it is geometrically proved
that two class FLDA decodes communicating classes
to maximize the channel capacity.

5 Conclusion

This paper gives the geometry of two class Fisher’s
linear discriminant analysis from the point of view of
communication theory. As a result, Fisher’s linear dis-
criminant analysis gives the maximum channel capac-
ity with transmitting class labels.
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