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Abstract

A key problem in mine planning is estimating the
locations of underground ore bodies from a set of sparse
core samples that span the area to be excavated. Data
from each sample location are interpreted by a geologist
and rendered as an image depicting the local ore distri-
bution. The goal is to reconstruct these sparse samples
into a dense image that can correctly account for the
underground structure. From a computer vision per-
spective, this has the form of a sparse data reconstruc-
tion problem, and is often tackled using a stochastic
reconstruction approach. However in the present case
the nature of the data is such that most conventional
approaches fall short. In this paper we introduce a
stochastic reconstruction method that uses a Restricted
Boltzmann Machine (RBM) architecture to solve the
problem in a novel way. Specifically, it incorporates a
two-phase learning approach that i) uses dense sam-
ple information available from already excavated areas
of the mine to build a general appearance model, and
then ii) conditions this model to account for the data in
the core sample images. Reconstruction is then accom-
plished by sampling the distribution implicit in the in
the RBM after learning. Our results show that this ap-
proach offers significant improvements to conventional
stochastic reconstruction algorithms as the RBM is bet-
ter able to learn the distribution underlying the sample
data.

1 Introduction

The problem of reconstructing a complete image
from a set of partial observations is well-known in the
computer vision literature [4, 6, 11]. Here we consider
an analogous problem in a completely different con-
text, often referred to as mining simulation, where the
problem is to reconstruct a dense two-dimensional field
from a set of sparse samples. The latter correspond
to mineral core samples that are excavated from the
ground through drilling, where the goal is to infer a
more detailed representation of the mineral distribu-

tion (i.e. cores → pixels). A variation of Gaussian Pro-
cesses, Kriging [9], has been widely used as a standard
reconstruction technique in many mining simulation
applications. However, due to the complicated varia-
tions in natural structures encounted in Geo-statistics,
the Gaussian model is not compatable and usually
generates poor reconstructions. Hence stochastic re-
construction with non-Gaussian distributions becomes
necessary.

Conventional algorithms used in mining simulation
operate in a way that is analogous to image reconstruc-
tion, first building a model to fit the prior distribution
over the configuration space of training patterns. Then
for given conditional data (i.e. novel), the model gen-
erates samples associated with the prior for simulation.

Over the past decade several approaches along these
lines have been developed using pattern based algo-
rithms, e.g., FILTERSIM [18, 17], SIMPAT[1, 2], and
WaveSim[5]. However these algorithms are limited in
their expressive power due to limitations of the model,
which essentially boils down to manifold learning on
patterns sampled from the training images. Recon-
struction from novel data is then accomplished by gen-
erating random patch-wise paths through the image
and populating each patch with a pattern drawn from
the manifold associated with the closest novel input.
As will be shown later in the experiments, this ap-
proach interpolates poorly when data are very sparse.

Another approch is characterized by statistically
driven algorithms such as SneSim [12] and MRF-based
Simlation [16]. As stochastic algorithms, a common
characteristic is that in order to compute the posterior
distribution, one has to sum over a high dimensional
configuration space. This is often intractable, neces-
sitating the use of techniques such as Markov Chain
Monte Carlo (MCMC) methods. In computer vision,
the Gibbs sampler was introduced to the field as a vari-
ation of MCMC to address this problem in the context
of image restoration [8]. As a Bayesian approach, the
prior distribution of the image is modeled by a Markov
Random Field. To generate restorations of a degraded
input image, the MRF model runs the Gibbs chain
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with simulated annealing to locate the energy mini-
mum in the configuration space.

However, the limited connectivity of the MRF model
often limits its expressive power. As a variation of the
MRF, the Restricted Boltzmann Machine (RBM) is a
stronger model with fully connected visible and hid-
den layers, where the parameters of these connections
(weights) can be learned from a separate training set.
The RBM and its variations have also been applied to
image restoration tasks [13]. In this example, a two
stage approach was used to i) learn a general appear-
ance model (prior) from a set of dense samples and ii)
adapt the general model according to a set of sparse
samples (novel). By sampling the resulting model one
implicitly solves the reconstruction problem. However,
one can take this a step further. By stochastically sam-
pling the model one can generate a distribution of im-
ages (this is referred to as a simulation in the mining
simulation literatute) which one can think of in a way
similar to particle filtering.

This notion of “simulation” is important as the in-
tention in mine planning is to plan for contingencies.
For example, in estimating the width of a mineral seam
one would be more interested in determining the enve-
lope containing all estimates rather than the maximum
likelihood solution. For the remainder of the paper,
the terms reconstruction and simulation are used in-
terchangeably.

In this paper, a two phase RBM based simulation
(RBMSim) is proposed, where RBM learns a full dis-
tribution over the pattern configuration space and can
effectively sample the entire distribution with a Gibbs
sampler. While the MAP solution is ambiguous, RBM
coupled with simulated annealing can be used to ex-
plore multiple local minima and generate a number
of plausible hypotheses within a prescribed confidence
interval. In addition, a two phase learning approach
is introduced to balance generalization and specificity.
This also helps the algorithm cope with the complexity
of the mining data.

2 RBM and Pattern based simulation

Figure 1. The parameters of a RBM consist of
weight matrix wij associated with the connec-
tion between hidden units hj and visible units
vi, also two bias weight vectors, bi for the visible
units and bj for the hidden units respectively. In
the context of image reconstruction, pixels corre-
spond to visible units.

As shown in Figure 1, RBM is a two-layer undirected
generative model, the stochastic binary units between
two layers are fully connected. The joint configuration
of units in both visible and hidden layers has an energy
defined as (1):

E(v, h) = −
∑

i,j

wi,jvihj −
∑

i

bivi −
∑

j

bjhj , (1)

where vi and hj are the states of visible and hidden
units respectively, bi and bj are their bias, and wij are
the weights between them.
By the energy configuration, the joint distribution

of p(v, h) is defined as (2):

p(v, h) =
e−E(v,h)

Z
,Z =

∑

v,h

e−E(v,h). (2)

The marginal distribution of visible units is factor-
ized as a product of exports (3):

p(v) =
1

Z

∏

i

ebivi
∏

j

(1 + e
∑

i
(bj+wijvi)). (3)

The activation of each visible unit given the hidden
units and the activation of each hidden unit given the
visible units are respectively defined as the following
sigmoid functions (4, 5):

p(vi = 1|h) = Sigmoid(bi +
∑

j

hjwi,j ), (4)

p(hj = 1|v) = Sigmoid(bj +
∑

i

hiwi,j ). (5)

RBM learning finds the distribution of p(v) that
best represents the distribution underlying the train-
ing data by fitting the parameters wij , bi, bj . As with
most undirected models, the RBM learning algorithm
is based on variations of alternative Gibbs sampling.
The log-likelihood gradient of RBM contains two terms
(7, 8, 9), expectation w.r.t the data distribution (posi-
tive phase) and expectation w.r.t the model distribu-
tion (negative phase). The second term is intractable.
Different learning methods use different algorithms to
approximate this term.

∂p(v)

∂wij
=< vihj >p(h|v) − < vihj >p(v,h), (7)

∂p(v)

∂bi
=< vi >p(h|v) − < vi >p(v,h), (8)

∂p(v)

∂bj
=< hj >p(h|v) − < hj >p(v,h) . (9)

The most popular algorithm for learning is Con-
trastive Divergence (CD)[10]. To do the learning, a
Gibbs chain is initialized from a sample of the train-
ing data, then alternated between hidden and visible
units for several iterations. The last sample from the
chain is used to approximate the intractable model
expectation. In addition, Persistent Contrastive Di-
vergence (PCD)[14] also uses Gibbs sampling to ap-
proximate the model expectation. But, PCD doesn’t
reset to the training data after weights update, the
state of the chain persists from the previous iteration.
By simply running a few iterations of the chain, these
changes would be sufficient to track and sample from
the updated model distribution. In addition, Fast Per-
sistent Contrastive Divergence (FPCD)[15] aims to get
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a faster mixing of the Gibbs chain. It maintains a sepa-
rate set of parameters that work with a higher learning
rate for sampling only. The learning serves to push the
chain out of the local mode.
Another noteworthy method to train RBM is Par-

allel Tempering (PT)[7] which uses Replica Monte
Carlo. It runs several chains in parallel under dif-
ferent temperatures rather than a single Gibbs chain.
As the temperature rises, the Gibbs distribution be-
comes smoother, facilitating mixing of the correspond-
ing chain.
In brief, PT [7, 3] obtains a better approximation

with less bias but heavier computational cost than CD
[10, 14, 15]. In this paper, the RBM learning is imple-
mented with PCD.
After learning, instances from p(v) can be gener-

ated by running a Gibbs chain until it converges to an
equilibrium distribution. This is accomplished using a
block Gibbs sampling technique (Figure 2) which al-
ternates activation of the hidden and active units such
that when one is activated, the other is held fixed. For
a sufficiently large t, the generated instance is guaran-
teed to be a sample drawn from p(v).

Figure 2. Block Gibbs Sampling.

3 Simulation by two phase RBM learning

Prior to excavation, a new area of the mine is
sparsely sampled by drilling core samples and perform-
ing an assay on the core material. This analysis is
based on expert knowledge and rendered in the form
of an image. In fact, this sample-to-image encoding
process is proprietary and performed for all measure-
ments, both novel and prior. From a computer vision
perspective, it provides normalization over the data
which facilitates further analysis. Figure 3a shows the
trace of a mineral seam determined by a geological ex-
pert from the analysis of sample data. On the right
in Figure 3b is a rendering of the expected ore distri-
bution produced by the encoding process. Note that
is certain cases it is possible to generate alternate ren-
derings for a particular set of data. In this paper there
is only a single image per sample. We refer to these as
the task dependent data.
Training an RBM solely with task dependent data

will learn a distribution that best represents data in
the vicinity of the core samples well, but generalizes
poorly - particularly if samples are very sparse as is
the case here. The solution adopted by all methods
discussed here is to exploit the rich source of data avail-
able from prior excavated regions. In the case of a new
installation, information is also available from archival
databases drawn from other installations with similar
characteristics. We refer to these as task independent
data (Figure 4). Note also that because such infor-
mation is gathered as part of the excavation process,

Figure 3. Task dependent data: (a) Trace of min-
eral seam determined by a geologist on the ba-
sis of core sample assay. (b) Synthetic image of
ore body distribution rendered from core sample
data.

Figure 4. Task independent data: Global training
set drawn from previously excavated areas.

measurements are available at full density.
The challenge is how to combine task dependent and

task independent data, balancing specificity with the
ability to generalize. In the case of systems such as
WaveSim [5], the task dependent synthetic image and
task independent data are all mixed together as the
training set without distinguishing between local or
global. The stochastic component is implemented by
randomly selecting a pattern from within the closest
manifold to the input sample. This produces good re-
sults if the core samples are reasonable dense, but in-
terpolates poorly otherwise. The novelty of the RBM
approach is in how it integrates these two sources of in-
formation to build a unified distribution that balances
local and global.
This is implemented by a two phase learning pro-

cess. RBM defines the distribution by three sets of
parameters, the weights, wij , and two sets of biases
bi, bj . The weight wij is the dominant parameter usu-
ally referred as the features. These reflect the natu-
ral characteristics of the ore distribution. The biases
define how much the local training data favours the
learned features. Hence the RBM is first trained with
global training set, all parameters wij , bi, bj will be up-
dated for each epoch. As these parameters converge,
the second phase is initiated with the task independent
data replaced by the task dependent data. However,
in this phase only the biases of the hidden units, bj ,
are updated at each epoch.
The process is summarised below:

• Building the Prior:

(1) Pattern Extraction

(2) RBM learning:

(2.1) First phase: Learn the weights and bi-
ases with task independent data.

(2.2) Second phase: Froze the weights and bi-
ases of visible units and learn the bi-
ases of hidden units with task dependent
data.
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• For simulation:

(4) Define a patchwise random path that covers
the sparse core sample image.

(5) RBM sampling: Generate multiple simula-
tions by sampling the RBM while clamping
the task dependent data to visible units.

In the first phase, RBM learns generalized features;
these features characterize a wide range of mining data.
This phase will be trained once only, and as soon as
training is complete the weights are frozen. In the sec-
ond phase, the RBM adjusts the biases to “over-fit”
the task dependent data to model the local character-
istic of the ore distribution. This partitioning of RBM
training appears to strike the appropriate balance be-
tween fit to data and reflecting the characteristics of
the general population.
Reconstruction of the sparse data is effected by the

simulation process in which a random path is generated
that provides a complete cover of the image. This is
done on a patch-wise basis using a grass fire algorithm
to generate the path. Each image patch maps exactly
onto the RBM depicted in Figure 1 with each visible
unit, vi, clamped to a specific pixel. The path is then
traversed and block Gibbs sampling run to equilibrium
at each patch along the way, yielding the simulation
output. The exceptions are pixels corresponding to
core samples (i.e. ground truth), which are initialized
from the core sample data at the start of the process,
but not updated.
Multiple simulation results are shown in Figure 5.

The simulation results of WaveSim are also shown as
a comparison in Figure 6.
We compare the RBMSim and wavesSim algorithms

applied to data sampled at the Olympic Dam base met-
als deposit, South Australia. The two algorithms share
the same training set which contains 30 images.
The advantages of the proposed RBM approach are

clear upon examination of the experimental results.
When input information is abundant, e.g. task de-
pendent data derived from the core samples comprise
approximately 5% or 10% of the grid, in Rows 3 and 4,
the loci of the ore seams (brighter areas in the images)
are similar. Both models tend to have a dominant lo-
cal minimum on the energy surface. However, even in
these cases the seams are better localized in the RBM
output. From these observations we speculate that the
RBM represents the prior distribution far more accu-
rately than classical approaches typified by WaveSim.
A major difference in outputs occurs when the input

drops to densities on the order of 1 or 2%. RBMSim
is still able capture much of the structure visible in
Rows 1 and 2, although there is some degradation in
the fine structure. Each of these patterns corresponds
to local minima of the energy surface. The WaveSim
output, in contrast, loses much of the structural detail
to the point where the output at 1 and 2% is unin-
formative. This implies that WaveSim cannot escape
from the local minima resulting in simulations with
limited stochastic variety.

4 Conclusion

This article focuses on the problem of reconstructing
a dense estimate of an ore body distribution from a set

Figure 5. RBMSim simulation results: From top
row to bottom are the simulations when core
samples cover 1%,2%,5% and 10% of the area to
be reconstructed. Each row contains 5 indepen-
dent simulations.

Figure 6. WaveSim simulation results: From top
row to bottom are the simulations when core
samples cover 1%,2%,5% and 10% of the area to
be reconstructed. Each row contains 5 indepen-
dent simulations.

of sparse core samples represented as images. It is ap-
proached as a stochastic image reconstruction problem
and uses a Restrict Boltzmann Machine architecture to
model the resulting distribution. What is novel about
this work is that it uses an efficient, two phase learn-
ing approach to capture the general characteristics of
the reconstructed data as well as the specifics condi-
tioned by the sparse samples. Image reconstruction is
effected by traversing a random path which covers the
image while drawing from the learned distribution of
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the RBM.
In spite of the strength of the model, the main weak-

ness is that the first learning phase is very time con-
suming. As the first learning phase is done, for each
incoming task dependent data, the second phase learn-
ing and simulation are almost real time.
Another interesting aspect of this work concerns the

idea of simulation. Since sampling of the RBM is a
stochastic process, multiple solutions can be drawn
that each fit the data to the same error (as reflected in
the energy minima found using Gibbs sampling). This
is important in the mining context as one desires and
“envelope” about the true solution. In comparison to
the current state of the art, the simulations presented
here appear to be a significant improvement. It is also
important to note that the accuracy of prediction has a
significant impact on the cost of the mining operation,
hence even an incremental improvement in algorithms
can have a significant economic impact.

References

[1] G Burc Arpat and Jef Caers. A multiple-scale, pattern-
based approach to sequential simulation. In Geostatis-
tics Banff 2004, pages 255–264. Springer, 2005.

[2] G Burc Arpat and Jef Caers. Conditional simulation
with patterns. Mathematical Geology, 39(2):177–203,
2007.

[3] Philemon B, Sander D, and Benjamin S. Training
restricted boltzmann machines with multi-tempering:
Harnessing parallelization. In AlessandroE.P. Villa,
Wodzisaw Duch, Pter rdi, Francesco Masulli, and Gn-
ther Palm, editors, Artificial Neural Networks and Ma-
chine Learning ICANN 2012, volume 7553 of Lec-
ture Notes in Computer Science, pages 92–99. Springer
Berlin Heidelberg, 2012.

[4] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro,
and Stanley Osher. Simultaneous structure and tex-
ture image inpainting. Image Processing, IEEE Trans-
actions on, 12(8):882–889, 2003.

[5] Snehamoy Chatterjee, Roussos Dimitrakopoulos, and
Hussein Mustapha. Dimensional reduction of pattern-
based simulation using wavelet analysis. Mathematical
Geosciences, 44(3):343–374, 2012.

[6] Antonio Criminisi, Patrick Perez, and Kentaro Toyama.
Region filling and object removal by exemplar-based
image inpainting. Image Processing, IEEE Transac-
tions on, 13(9):1200–1212, 2004.

[7] Guillaume Desjardins, Aaron C Courville, Yoshua Ben-
gio, Pascal Vincent, and Olivier Delalleau. Tempered
markov chain monte carlo for training of restricted
boltzmann machines. In International Conference on
Artificial Intelligence and Statistics, pages 145–152,
2010.

[8] Stuart Geman and Donald Geman. Stochastic relax-
ation, gibbs distributions, and the bayesian restoration
of images. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, (6):721–741, 1984.

[9] Pierre Goovaerts. Geostatistics for natural resources
evaluation. Oxford university press, 1997.

[10] Geoffrey E Hinton. Training products of experts by
minimizing contrastive divergence. Neural computa-
tion, 14(8):1771–1800, 2002.

[11] Nikos Komodakis. Image completion using global op-
timization. In Computer Vision and Pattern Recog-
nition, 2006 IEEE Computer Society Conference on,
volume 1, pages 442–452. IEEE, 2006.

[12] Sebastien Strebelle. Conditional simulation of com-
plex geological structures using multiple-point statis-
tics. Mathematical Geology, 34(1):1–21, 2002.

[13] Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey
Hinton. Robust boltzmann machines for recognition
and denoising. In Computer Vision and Pattern Recog-
nition (CVPR), 2012 IEEE Conference on, pages 2264–
2271. IEEE, 2012.

[14] Tijmen Tieleman. Training restricted boltzmann ma-
chines using approximations to the likelihood gradient.
In Proceedings of the 25th international conference on
Machine learning, pages 1064–1071. ACM, 2008.

[15] Tijmen Tieleman and Geoffrey Hinton. Using fast
weights to improve persistent contrastive divergence.
In Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 1033–1040. ACM,
2009.

[16] Haakon Tjelmeland and Jo Eidsvik. Directional metropo-
lis: Hastings updates for posteriors with nonlinear like-
lihoods. In Geostatistics Banff 2004, pages 95–104.
Springer, 2005.

[17] Jianbing Wu, Tuanfeng Zhang, and Andre Journel.
Fast filtersim simulation with score-based distance. Math-
ematical Geosciences, 40(7):773–788, 2008.

[18] Tuanfeng Zhang, Paul Switzer, and Andre Journel.
Filter-based classification of training image patterns
for spatial simulation. Mathematical Geology, 38(1):63–
80, 2006.

320


