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Abstract

Automatic target recognition based on the long wave
infrared (LIR) and visible-light spectrum (VIS) image
matching is a very challenging problem. It is due to
the fact that the images between LIR and VIS have
lots of different textures. This difficulty is inherent in
the thermal radiation imaging affected by one of the
principal mechanisms so called heat transfer. In this
paper, a novel algorithm is presented for object recog-
nition between the LIR and VIS images under various
conditions. It is assumed that the visible light images of
the target are available a priori, and the newly acquired
infrared images are used to perform the target recogni-
tion task. The LIR and VIS images are first initialized
with edge detection and binary template matching, fol-
lowed by a local fuzzy threshold to identify the high sim-
ilarity objects. Our method has has low computational
requirements and can be implemented on a real-time
system. Several experiments are carried out using the
real scene images with various test objects.

1 Introduction

Automatic target recognition (ATR) is a technique
to recognize objects or targets by comparing the in-
formation stored in the database and acquired from
the real-time sensing. It is commonly used to enhance
the missile guidance in the type of fire-and-forget ap-
plications. In such missile systems, GPS is used to
automatically guide the missile to the target in a long-
range distance, and ATR then takes over to increase
the accuracy in the short-range. The objective is to im-
prove the missile usage efficiency and lower the military
expenditure. In general, a missile system adopts an in-
frared sensor, called forward-looking infrared (FLIR),
to avoid low-quality imaging in the battlefield such as
in the rainy or foggy weather conditions. In this work,
the main target needs to be recognized within several of
static targets by their heat emission, along with multi-
ple environmental interferences. However, the thermal
radiation follows the equation α+ρ+γ = 1 with some
mechanisms such as heater transfer, convection and
conduction, where α, ρ and γ represent components of
absorption, reflection and transmission, respectively.
Under this image formation process, the appearance
of LIR images is fuzzy and represents a totally differ-
ent concept from the VIS images. Thus, the develop-
ment of an infrared-visible object recognition system
is a very challenging task.
Most approaches for infrared object detection adopt

binary template matching to detect targets in the im-
age or video sequence. Furthermore, the real-time per-

formance is generally required for a missile system. In
the previous work, the robust template matching tech-
niques are used in [1, 2]. Lewis [1] adopted a well-
known cross-correlation method in the transform do-
main and pre-computed a table which contains the
integral of the image to speed up the system execu-
tion. Omachi et al. [2] and Luigi et al. [3] proposed
the algorithms that used NCC bounded partial corre-
lation template matching and could perform efficiently
with the width and height of the template image dif-
ferent from the partial image. There also exist other
methods such as extracting areas of interest (blobs),
PNSF-m, and orientation map [4, 5, 6] . But most
researches in the literature about template matching
address the VIS-VIS problems, not the LIR-VIS re-
lated issues. Consequently, these methods cannot be
applied to the LIR-VIS recognition system.
In this paper, we propose a technique for automatic

target recognition by infrared and visible image match-
ing. We use VIS templates to match the objects in the
LIR image through the fuzzy cross-correlation coeffi-
cient with a proper threshold. In our experiments, it
is assumed that some of the VIS images are collected
for matching the specific objects in the LIR images. A
video sequence is captured when the camera is moving
at the distance of 20 meters to 15 meters away from
the target objects. Except for the simple test objects,
our method is also applied to the real world scenes
with vehicles and buildings. To the best of our knowl-
edge, there are very few works attempting to recognize
a specific object between NIR and VIS. In this work,
the proposed technique for solving the LIR-VIS recog-
nition problem is easy to implement with low compu-
tation cost.

2 Our Approach

In the past few years, several adaptive algorithms
have been proposed for object recognition, and the
methods can be divided into two categories, content-
based and feature-based [7]. Some well-known feature-
based methods such as SIFT and SURF descriptors
in FLIR images are tested in the early work, but it
shows poor performance because the feature points in
LIR and VIS are different. Since there are very few
works that could adapt in the FLIR images, we need
to extract stable features which are able to represent
the same object in the images obtained from differ-
ent sensing techniques under various conditions, e.g.
the different target size and type of objects, and the
complexity of the background scene. Another major
problem is that the FLIR image quality can affect the
performance of ATR systems. To ensure an ATR tech-
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Figure 1. The concept of our ATR system.

nique can adapt in different conditions, the proposed
method includes the following steps:

(1) For a pair of input VIS/LIR images, extract the
edge-based features.

(2) A Gaussian-like pyramid of the image is con-
structed with ten spatial scales.

(3) Use local fuzzy threshold for an ROI extraction
and binary template matching.

In step 1, a VIS image and an FLIR video sequence
are sent to the recognition system, after noise reduc-
tion, the edge-based features are then extracted. Since
the LIR imaging is formulated through thermal radi-
ation, we found the boundary in each object in the
LIR and VIS images. This is an important process in
our algorithm for initial object recognition. Another
purpose to extract the edge-based features is that we
want to perform a center-surround difference opera-
tion. The center-surround difference is used to find
the salient regions of an input image. A pixel with
the intensity value smaller than a threshold will be re-
moved to derive the binary template and LIR binary
image.

2.1 Binary template generation

Due to the object templates are VIS image, it’s eas-
ier to collect all possible outward appearance. We
assume that each VIS template already contains the
approaching path property For each given input VIS
image f(x, y), a region template T (x, y) can be found
by binary template generation, and it contains the ob-
ject in the region. Notice that VIS image f can be
taken by any camera. We first remove the image noise
and extract the edge features by a convolution pro-
cess. For each LIR image I(x, y) with the resolution
of 320× 240, a function ω(Lλ1 , Lλ2) which denotes the
infrared intensity energy is then computed. The func-
tion ω(Lλ1

, Lλ2
) contains an upper bound temperature

emissivity Lλ1
and a lower bound temperature emis-

sivity Lλ2
, and is given by

ω =
Lλ1

Lλ2

(1)

The emissivity function ratio is directly proportional
to the temperature, and matched to a single channel 8-
bit image. We then convolve the VIS and LIR images
using the edge kernel g(x) to extract edge features, i.e.,

ET (x,y) = T (x, y) ∗ g(x) (2)

BET
=

{
0, if ET (x,y) < δ
255, if ET (x,y) > δ

(3)

Figure 2. Gaussian pyramid with scale coefficient.

where ET (x,y) is the edge template convolution by the
gradient kernel g(x), and the binary edge template is
constructed by a filter with a threshold δ.
We then use a Gaussian-like pyramid to reduce the

size of each template (see Figure 2). This setting is due
to the physical rule of the missile path in our experi-
ments. The image scale change is similar to a Gaussian
pyramid. A scale coefficient is added to the equation
to let it more adaptable to the real scene conditions.
A formal Gaussian with a scale coefficient is defined

as follows:

g(x, y; t) =
1

2πt
e

−(x2+y2)
2t S(d) (4)

where S(d) denotes the scale coefficient under different
distance d for a VIS binary template with the size of
225× 181. The distance (in meter) in the experiments
is d = 2, 4, 6, · · · , 20, and the perfect matching results
with the most suitable detection region are S(d) =
90%, 50%, 35%, 25%, 20%, 17%, 15%, 12%, 10.5%, 9.6%,
respectively.

2.2 Binary template matching

In [1, 8], a template matching strategy is based on
cross-correlation, and affinities are computed by M =
#(T AND I)/#(T XOR I)+1, where T and I represent
the pairs of VIS binary templates (BET

) and the bi-
nary edge LIR images in the current frame of an FLIR
video sequence. In the two-dimensional case, given the
intensity of the input image I(i, j) with the ith column
and the jth row, the NCC equation can be written as

NCC(x, y) =
C(x, y)

||I(x, y)||2 · ||T ||2 (5)

where

C(x, y) =

M−1∑
i=0

N−1∑
j=0

I(x+ i, y + j) · T (i, j) (6)

||I(x, y)||2 =

√√√√M−1∑
i=0

N−1∑
j=0

I(x+ i, y + j)2 (7)

||T ||2 =

√√√√M−1∑
i=0

N−1∑
j=0

T (x+ i, y + j)2 (8)

Here the goal is to get the production of the NCC
similarity rate S = {S1,S2,. . . ,Sn}, where n is the num-
ber of box-filtering count. We can reduce the com-
putation cost by pre-constructing the integral images.
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(a) (b) (c)

Figure 3. NCC method performed at difference
distances, the target to be recognized is in the
middle. The binary template size is 225 × 181.
(a) d = 6m, S(d) = 35%. (b) d = 12m, S(d) =
17%. (c) shows an incorrect recognition result.
d = 18m, S(d) = 10.5%

Usually the NCCmax will be taken for the recognition
results. We also implemented the Sum of Square Dif-
ference (SSD) metric to compare with NCC metric in
VIS-LIR object recognition. The SSD is given by

SSD(x, y) =
M−1∑
i=0

N−1∑
j=0

(I(x+ i, y + j)− T (i, j))2 (9)

where the best result in normal SSD is denoted by
SSDmin. An experiment using the NCC method have
been tested, and the results are shown in Figure 3.
The target object is found correctly in Figures 3(a)
and 3(b), but a mismatch occurs in Figure 3(c). This
is mainly due to the large distance between the objects
and the infrared sensor, which makes the objects look
similar in such a small scale. In this situation, two ob-
jects with the same shape but different content inside,
the results with the similarity computed by NCC could
be incorrect.

2.3 NCC with coefficient and local fuzzy thresh-
old

To deal with the problem in Section 2.2, we consider
the region for object recognition by using the coeffi-
cient with NCC and a local fuzzy threshold [9]. For an
NCC product LIR image I(x+ i, y+ j) and the binary
template T (i, j), we rewrite the equation as

NCCcoe =
C ′(x, y)

||I ′(x, y)||2||T ′||2 (10)

C ′(x, y) =
M−1∑
i=0

N−1∑
j=0

I ′(x+ i, y + j) · T ′(i, j) (11)

I ′ =
M−1,N−1∑

i,j=0

I(x+i, y+j)− 1

WH

M−1,N−1∑
i′,j′=0

I(x+i′, y+j′)

(12)

T ′ =
M−1,N−1∑

i,j=0

T (i, j)− 1

WH

M−1,N−1∑
i′,j′=0

T (i′, j′) (13)

Notice that the proposed modification adds an av-
erage term in Eq. (10), and it considers the whole ob-
ject region for processing. To minimize the heat trans-
fer and improve the previous method, we set a fuzzy

(a) (b) (c)

Figure 4. Performance comparison of different al-
gorithms at d = 18m, S(d) = 10.5%. (a) NCC
fuzzy threshold without coefficient. (b) SAD co-
efficient with fuzzy threshold. (c) NCC coefficient
with fuzzy threshold.

threshold to select the NCC similarity rate which is
greater than the threshold. Given a fuzzy threshold Fδ,
the output ROI is the one with γ(γ1, γ2, · · · , γn) > Fδ.
In final step, we select the result from all ROIs with
the highest similarity rate.
As shown in Figure 4(a), the ROIs are identified if

the similarity rate is higher than a fuzzy threshold,
i.e., γ > Fδ = NCC(x, y) = 0.96, for the NCC method
without a coefficient term. However, it contains too
many false-positive regions. In Figure 4(b), we test the
SAD coefficient method with a fuzzy threshold and it
shows that the result is better than Figure 4(a). Fig-
ure 4(c) shows the best result obtained using NCC co-
efficient with a fuzzy threshold. The target ROI is
identified perfectly and it resolves the false detection
problem as shown in Figure 3(c). In addition, to search
an object within a w×h LIR image using an i×j tem-
plate, the time complexity is O(whn), where n is the
number of all ROIs. To construct the binary template,
the time complexity is given by O(i2j2).

3 Experimental Results

In our experiments, several scenes containing sample
objects and real world objects have been tested. First,
three test objects were placed in a field, and the VIS
template images were collected as a database for online
target recognition using the FLIR images. The emis-
sivity of the infrared camera was set as 0.9ε. We simu-
lated three different missile paths in a scale of 1 : 100,
and the size of the main object to be recognized was
about 57×40 cm2. In a real missile system, the target
to be recognized is at about 2 km away, which corre-
sponds to 20 meters in our experiment. We recorded
three sets of FLIR images from 20 meters to 2 me-
ters away from the target with different approaching
angles, and one video sequence was recorded from 20
meters to 15 meters away from the target. Each set
of FLIR images contains 10 frames, and the video se-
quence contains 150 frames.
Figure 6 shows the suitable template sizes for tar-

get recognition in the approaching paths of three dif-
ferent angles, 260◦, 270◦, 280◦ respectively. The
matching range represents the template scale which
is suitable for the target recognition task. Each
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(a) (b) (c) (d)

Figure 5. The object recognition results. a) A result from the video sequence experiment. b) The recognition
of a vehicle from the side view. c) The vehicle is recognized with a different direction. d) The target
recognition result of a building.

point on the line is the correct result that we have
tested over 300 times. The precision rates for the
three different angles are given by (angle, precision) =
(260◦, 90%), (270◦, 100%), (280◦, 90%). Another ex-
periment is carried out using an LIR video sequence
with two different emissivity. The accuracy is 100%
and the result is shown in Figure 5(a). The template
size is determined by the Gaussian-like pyramid with
a scale coefficient. In this experiment, the scale in the
distance between 20 meters to 15 meters is more sta-
ble than other distance ranges. That is, we are able to
use one template scale to recognize the objects in the
range of 20 meters to 15 meters.
In the last experiment, the real world scene is used to

test our algorithm. The target recognition results are
shown in Figures 5(b), 5(c) and 5(d). In Figures 5(b)
and 5(c), the vehicles with different viewing directions
are recognized successfully using only one VIS tem-
plate. Figure 5(d) demonstrates the successful recog-
nition of a building at approximately 1.2 kilometers
from the camera.

4 Conclusions

This paper presents an LIR-VIS object recognition
method based on template matching and NCC with
fuzzy coefficient. We use the collected VIS images to
recognize the target object presented in the LIR im-
ages. The experimental results demonstrate that we
can recognize the real world objects at 1.2 kilometers
away from the camera. Furthermore, the proposed
technique is able to deal with the approaching angle
different from the VIS image acquisition positions. In
the future work, we will improve the method to recog-
nize the objects under possible rotation and distortion,
and track the target till a close distance.
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