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Abstract

In this paper two image transforms are proposed for
the calculation of sparse disparity maps. We present a
new variation of the Census Transform, which we call
the Thesholded Census Transform. This allows the cal-
culation of the pixels around the edges without a sepa-
rate edge-detection stage. Then we propose a new ap-
plication of the Complete Rank Transform (which has
so far only been used to calculate optical flow) to solve
the Stereo-Matching problem. The utilization of both
image transforms represents an improvement in error
rates and computational cost against the Census Trans-
form, which is the state of the art image transform used
for Stereo-Matching.

1 Introduction

The information from the environment surrounding
a mobile robot or autonomous vehicle is crucial for
the navigation task. Sensors like laser scanners and
time-of-flight cameras provide 3D information in real-
time but they are expensive. In addition, this kind
of sensor is active, meaning they could interfere with
other pieces of equipment. An alternative approach to
obtain 3D information relies on the use of computer
vision to calculate depth maps. The increasing avail-
ability of low-cost high-resolution cameras means that
this approach is now affordable. In addition, as they
are passive sensors, they do not interfere with existing
systems.
In stereo vision, the disparity map contains the dif-

ference in the location of the objects in each view.
When a disparity value is obtained for every pixel
in the image it is called a dense disparity map. Ap-
proaches based on dense disparity maps are useful for
object identification but they are computationally in-
tensive. In contrast, if the disparity is calculated for
only a few pixels in the image it is called a sparse dis-
parity map. As fewer pixels are processed in a sparse
disparity map, the computational load can be reduced.
Among different approaches, the image transform-

based approaches have been shown to be successful for
the calculation of dense disparity maps [4, 7, 8]. In
this paper a new image transform is proposed for the
calculation of sparse disparity maps. In addition, an
image transform that has been used up to now only for
the calculation of Optical Flow, is proposed for the cal-
culation of disparity maps. The first image transform
is the Thresholded Census Transform. This new image
transform produces a value only for the pixels, which
are located around edges. However it does not need an
explicit edge detection. The second image transform is
the Complete Rank Transform, which was introduced
for the calculation of optical flow in [3]. In this work
it is used for matching pixels in the stereo pair.
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Figure 1: Non parametric and illumination invariant
image transforms. a) Intensity values for a window of
size 3x3. b)ξ(p, p′) for the CT, CT = 11010110. c)
ξ(p, p′) for the TCT, ε = 15, TCT = 10010100. d)
Rank for center pixel, RT = 5. e) Rank for each pixel,
CRT = 1,3,7,1,5,8,0,4,6.

This paper is organized as follows: in the next sec-
tion the work on the Census Transform and Complete
Rank Transform for the calculation of disparity maps
and optical flow is summarized. In Section 3.1 the
Thresholded Census Transform is presented. In Sec-
tion 4 the experimental results are presented along
with the implementation details; and in Section 5 the
conclusions are presented.

2 Related Work

In this section a review of the Census Transform and
the Complete Rank Transform is presented.

2.1 The Census Transform

The Census Transform (CT), introduced by Zabih
and Woodfill [13], computes a bit-string in a square
window. The concept starts by defining the function
ξ to represent the relationship between the intensity I
of the pixels p and p′

ξ(p, p′) =
{

1, if I(p′) < I(p)
0, otherwise

(1)

Then the Census Transform C(p) is defined by cre-
ating a vector containing the result of the comparison
ξ(p, p′) for each pixel p′ in the window N(p) centred
on p

C(p) =
⊗

p′∈N(p)

ξ(p, p′) (2)

where
⊗

represents the concatenation operator and
the window size is w x w. This transformation has
proven to be fast when implemented on embedded sys-
tems [7] and requires only a small amount of mem-
ory for storing each value. An example of the Census
Transform can be seen in Fig. 1b.
Because some of the pixels surrounding the pixel

p are similar to it, Stein [12] introduced a similarity
threshold ε. This changes the function ξ to:
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ξ(p, p′) =

{
0, if I(p)− I(p′) > ε
1, if |I(p)− I(p′)| ≤ ε
2, if I(p′)− I(p) > ε

(3)

Stein used this transform which is called Ternary
Census Transform for calculating the Optical Flow. Al-
though more discriminative, this representation loses
the small memory footprint of a binary representation
by using ternary values. In this paper the concept of
the similarity measure is incorporated in the Census
Transform whilst keeping a binary representation.

2.2 The Complete Rank Transform

Another transform (presented by Zabih and Wood-
fill) is the Rank Transform (RT) [13]. The RT is calcu-
lated by counting the number of pixels, whose intensity
is smaller than the centre pixel p, in a window N(p).
This is shown in Fig 1d.
In order to incorporate more information from the

window N(p), Demetz, Hafner and Weikert [3] intro-
duced the Complete Rank Transform (CRT). They im-
prove the discriminative power of the RT by calculat-
ing the Rank for every item in the support window.
This is illustrated in Fig 1e. In [3] the CRT is used to
calculate the Optical Flow embedded in a Variational
Framework and obtains good results. In this paper
the CRT is used for the first time to solve the stereo
matching problem.

3 Sparse Disparity Maps

The use of sparse disparity maps reduces the com-
putational load, as the disparity is calculated only for
a few pixels in the image. The careful selection of the
pixels, for which the disparity is calculated, allows the
identification of any possible obstacle in a navigation
task. The edge pixels are a good candidate as they are
present even in areas with a flat texture.
In recent years the Census Transform has been used

for the calculation of Optical Flow [12, 9, 6] and dense
disparity maps [7, 10]. This transform has shown its
discriminative power is enough to allow the matching
of the pixels in the image pair. Although some ap-
proaches are claimed to work in real-time, this has
been achieved using low resolution images and spe-
cialized hardware [7, 10]. It is reasonable to expect
that, if the image resolution is increased, the real-time
performance would be lost.
In order to reduce the computational load by the use

of sparse disparity maps, in this paper a variant of the
Census Transform is proposed, which is able to obtain
disparity information only from the pixels around the
edges. This variant of the Census Transform is intro-
duced in Section 3.1. In addition, the Complete Rank
Transform is used for the first time to solve the stereo
matching problem in Section 4.2.2.

3.1 The Thresholded Census Transform

Hafner, Demetz and Weickert [6] demonstrated that
the good performance of the CT is obtained by extract-
ing information from the areas with high gradient in
the image. As is well known, the edges in the image are
created by changes in the intensity function. Following
this fact, a modification to the CT is proposed.

Table 1: Edge pixels identified by the TCT on the
KITTI and Middlebury images using a window size of
16 and similarity ε = 6.

Test image Canny (%) EDPF (%)
Average on KITTI 0.82 0.91
Tsukuba 0.83 0.90
Venus 0.85 0.91
Cones 0.87 0.94
Teddy 0.84 0.93
Aloe 0.90 0.94
Flowepots 0.78 0.81

The Thresholded Census Transform (TCT) was in-
spired by the idea of the Ternary Census Transform
[12]. But instead of creating a third value for the sim-
ilar pixels, the TCT sets their value to 0 as in the Fig.
1c. This changes ξ(p, p′) to:

ξ(p, p′) =
{

1, if I(p′) < I(p)− ε
0, otherwise

(4)

Where ε is the similarity threshold. The use of this
similarity threshold allows the incorporation of infor-
mation from the pixels around the edges while keeping
a binary representation. In experiments it was found
that the pixels with a non-zero string are located at
the brighter side of the edges or in in highly textured
regions. The edge detection capability of the TCT is
tested in Section 4.1.

4 Experimental Results

In this section the results of the experiments are
shown. First the capability of the TCT to identify
the pixels around the edges is tested and the results
are shown in Section 4.1. Then the TCT and CRT are
used to calculate disparity maps and the results are
presented in Section 4.2.

4.1 Integrated Edge Detection on the TCT

The edge detection is tested by comparing the pixels,
for which a non-zero TCT string is found, against the
pixels marked as edges by the Canny [2] and EDFP
[1] edge detectors. After calculating the TCT for each
image, a mask is created for the pixels which obtained
a non-zero string.
The parameters used in the implementation are set

to ε = 8, w = 9 as these produced the best performance
on the KITTI Benchmark Suite [5] as it will be shown
in Section 4.2.1. For the Canny edge detector the pa-
rameters 30 and 60 for the lower and higher thresholds
are set respectively as in [1]. For EDPF, the imple-
mentation available by Akinlar and Topal [1] is taken
using a sigma σ = 1.

Figure 2 shows the average number of edge pixels
detected in the images from the KITTI Benchmark
Suite. Figure 3 shows that the edges (white pixels)
detected by Canny and EDPF are located over the
mask produced by the TCT (gray pixels). Table 1
shows the percentage of edge pixels detected on the
KITTI and Middlebury [11] datasets.
It is important to note that most of the non-detected

pixels are located at one pixel distance from the ob-
tained mask. This indicates the capability of the TCT
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Figure 2: Pixels detected on edges for different pa-
rameters of the TCT. The edges were detected by the
Canny (x) and EDPF (o) edge detectors.

Figure 3: Integrated edge detection on the TCT. From
left to right, input image, edges detected by Canny
and EDPF respectively. White pixels indicate an edge,
gray pixels are the non-zero TCT strings. The shown
images are from the KITTI Benchmark Suite and Mid-
dlebury dataset respectively from top to bottom.

to capture the edges in the image. Figure 3 shows ex-
amples of the detected edges.
The experiments on edge-detection show that for

window sizes greater than w = 8 there is no signifi-
cant change in the percentage of detected edge pixels
for low similarity values.

4.2 Disparity Calculation

In this section the TCT and CRT are used for cal-
culating the disparity maps on the KITTI Benchmark
Suite. This dataset provides semi-dense ground truth
for real-world images. All of the experiments were run
on a Laptop with a processor Intel Core i7 2675QM at
2.2 GHz and 8GB of RAM using only one thread.

4.2.1 Thesholded Census Transform

The TCT was used for the disparity calculation in
the same way the Census Transform is used in [7]. A
sparse window size of 9x9 pixels is used along with
an aggregation window of 5x5 pixels. The Hamming
distance is used for calculating the difference in the
values of the transform for a given pixel. As the simi-
larity threshold ε allows the identification of the edges,
the texture map required in [7] is not used. In addi-
tion, the disparity values are calculated only for those
pixels, for which the transform was different from 0.
Different values of the parameters of the TCT were

tested on the KITTI Benchmark Suite, in order to find
the value that produces the best performance. Figure
4 shows the behaviour of the average disparity error
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Figure 4: Disparity error vs. similarity ε for the TCT.
The minimum value is found when w = 9 and ε = 8
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Figure 5: Average disparity error vs. window size for
the CRT. The minimum value is found using a window
size of 16.

on the KITTI Benchmark Suite at different values of ε
and w. It was found that the combination w = 9, ε = 8
minimizes the error. A sample image of the disparity
maps obtained by using the TCT is shown in Figure 6.

4.2.2 Complete Rank Transform

The implementation of the CRT for calculating the
disparity map is based on the one used in [7]. But the
sparse window is not used, i.e., all of the pixels in the
window are required for the calculation of the trans-
formation. In addition, as the obtained values in the
transform are integer, the Sum of Absolute Differences
(SAD) is used as cost function. No aggregation window
was used for the cost calculation, as it was found that
it increased the computational load without increasing
the quality of the disparity maps.
Different window sizes were tested on the KITTI

Benchmark Suite. Figure 5 shows the effect of the
window size on the accuracy of the obtained disparity
maps. A window size of 16 pixels was found to produce
the most accurate disparity maps. A sample disparity
map obtained by the CRT is shown in Figure 6.
In order to compare the performance of the proposed

methods, the TCT and CRT are compared against the
Census Transform as presented in [7]. The obtained
results are shown in Table 2. From this table it can
be seen that the CRT produced denser disparity maps
although the running time is higher than the binary
transforms. Although the TCT obtained the sparser
disparity maps, these contain information from the pix-
els around the edges, allowing the visual identification
of the obstacles in a navigation task.

5 Conclusions and Future Work

Two image transforms invariant to changes in illu-
mination are introduced for the calculation of disparity
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Table 2: Comparison of the average disparity error for the CT, TCT and CRT.

Error threshold Density Avg. Error Running time (s)
1 2 3 4 5

CT [7] 0.131755 0.080045 0.068259 0.062245 0.058101 0.35045 2.127764 2.34
TCT 0.104788 0.063885 0.056033 0.051821 0.04877 0.140475 1.845432 1.73
CRT 0.072721 0.047265 0.041529 0.038324 0.035663 0.066979 1.300896 6.34

Figure 6: Disparity maps obtained by the different im-
age transforms. From top to bottom the transforms
are: Ground Truth, Census Transform, Thresholded
Census Transform and Complete Rank Transform re-
spectively.

maps. The TCT was shown to successfully extract in-
formation from the pixels around the edges without a
separate edge-detection stage. The CRT was shown
to increase the density of the obtained disparity maps
at the cost of longer computation. Both image trans-
forms present an improvement over the original Census
Transform in the presented average error and the com-
putational cost.
Further research will include the use of an adaptive

similarity measure for the TCT and the incorporation
of the new image transforms into an edge-aware algo-
rithm for disparity calculation.
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