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Raphaël Labayrade
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Abstract

We present Multi-Genomic Curve Extraction
(MGCE), a robust method to extract curves in noisy
datasets and images. Unlike other robust extraction
methods, MGCE does not require to choose the global
curve model to extract prior to the process. Instead, it
identifies the inliers with respect to an underlying set
of local models which number and associated data sub-
sets are automatically determined during the run of the
algorithm. As MGCE attempts to minimize this num-
ber, the robustness of the inlier extraction is reinfor-
ced. The method relies on Multi-Genomic Algorithms
(MGA) which are an extension of Genetic Algorithms
(GA) designed to handle populations of solutions with
variable-length chromosomes. Numerical experiments
provide insights about the performance of the method
and its applicability to road lane border detection.

1 Introduction

Extracting models in images is a key problem in
image processing. It is often difficult since the data
extracted from images are usually sparse and noisy,
raising the problem of robust model extraction: the
model should be adjusted to inliers only while outliers
should be rejected. At the same time the adjusted mo-
del should perform interpolation in areas where there
is no relevant data. The problem becomes more diffi-
cult and nearly inextricable if no prior knowledge is
available about the model to extract – which is of-
ten the case in practice. At best, a few assumptions
can be reasonably formalized such as continuity and/or
smoothness, but the global shape to look for is usually
unknown.
Least Squares [1] is a well-known curve fitting technic
which is sensitive to outliers. By introducing assump-
tions about the noise affecting the data, M-estimators
[2] can perform robust curve extraction. In the image
processing community, an alternative popular method
is the Hough transform [3]. The complexity of the algo-
rithm increases with the number of degrees of freedom
of the model that is looked for, limiting its practical
use to simple models. Another widely used method is
RANSAC [4], that randomly samples the dataset and
estimates the model parameters from the sampled data
subset; the process is iterated several times. The iden-
tified model is the one best adjusted to the whole set
of data over the iterative process. Genetic Algorithms
(GA) have also been used for feature extraction in a
image [5]. Former work concluded that while their im-
plementation is different, the robustness of the method
is similar to the Hough transform. Historically, the use
of GA was rather marginal in the image processing
community but they are becoming more popular.

All the technics mentioned above require choosing the
model to extract, since their outputs are estimates of
the values of the model parameters. Thus, such me-
thods – at least their basic implementation – are not
well suited to look for a curve of unknown model.
In this paper, we introduce Multi-Genomic Curve Ex-
traction (MGCE), which aims at identifying the inliers
with respect to an underlying curve of unknown mo-
del, from a dataset affected by noise and outliers. The
method relies on Multi-Genomic Algorithms (MGA)
[6] which are an extension of GA designed to handle
populations of solutions with variable-length chromo-
somes.
The remainder of the paper is structured as follows.
Section 2 presents the general flowchart of MGA. Sec-
tion 3 details MGCE. Section 4 is dedicated to nume-
rical experiments. Section 5 concludes.

2 Multi-Genomic Algorithms (MGA)

MGA [6] are a class of optimization algorithms ex-
tending GA, that have been recently applied in the
context of geometric problems and building design.
Contrary to GA, MGA handle different models in the
same population of solutions.
In GA, all the solutions are instances of the same model
and are encoded as chromosomes of the same length.
From an initial random population, crossover is perfor-
med between couples of individuals, that creates chil-
dren. Mutation is also performed, that slightly modi-
fies the individuals. The resulting individuals are then
sorted according to their fitness, representing their sui-
tability to the problem. The best individuals are kept
for the next generation while the other ones are dis-
carded. The best individual of the last generation is
considered to be the solution of the problem.
In MGA, the population can be composed of solutions
being instances of different models. Therefore, indivi-
duals are instances of different chromosomes; the struc-
ture and length of the chromosome of an individual,
and thus his genome, can differ from the one of ano-
ther individual. As multiple genomes are coexisting,
the population is multi-genomic: it is handled by a
MGA. In addition to classical GA operators, MGA in-
troduces gene insertion and gene deletion, allowing to
modify the length of the chromosome of an individual.
Moreover, the crossover can be performed between in-
dividuals whose genomes are different; thus, a hybrid
crossover operator is used instead of the classical GA
crossover operator. The general flowchart of MGA is
presented in Algorithm 1. It should be noticed the dif-
ferent operators can be implemented in various ways,
and are usually problem-dependent.
With respect to GA, MGA present some interesting
advantages and emerging properties. First, since va-
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Fig. 1. Vertical areas segmenting the cloud of
points, and two individuals in the early genera-
tions featuring different numbers of local models.

rious models are handled at the same time, MGA are
better suited to problems where the choice of a model
is not obvious or trivial. Second, the best model fitted
to the problem is automatically identified at the end
of the algorithm. Third, the computing time is reduced
with respect to a GA handling the model featuring the
longest chromosome (i.e. the most general model). For
these reasons, MGA seem to be well suited for perfor-
ming robust extraction of a curve of unknown model.

Algorithm 1: MGA Flowchart
Data: Models, num gen, num ind
Result: Optimal Solution (MCO)

1 P = initial Multi-Genomic population ;
2 for i≤num generations do
3 P.assess fitness() ;
4 New P = [] ;
5 while len(New P)<num ind do
6 parents = Selection(P) ;
7 children = Hybrid Crossover(parents) ;
8 New P.append(children) ;
9 P.append(new P) ;

10 P.mutate() ;
11 P.gene insertion() ;
12 P.gene deletion() ;
13 Return P ;

3 Proposed approach: MGCE

3.1 Problem formulation

We suppose a curve of the form y = f(x) (f is unk-
nown) and a cloud of points P that contains nin noisy
inliers (x, f(xi) + εi) where εi is a positive or nega-
tive amount of noise affecting point i, and nout outliers
(xOi, yOi) with possibly nout > nin (see Figure 1).
We look for the inliers with respect to a set of local
models Mi that approximates the curve f in the cloud
of points P . Each model Mi is defined on an interval
Ii = [xbi, xei] such as xbi+1 = xei, meaning that the
successive intervals are not overlapping. Nor the width
of each interval neither the number of local models
are set a priori. Only the maximum number of models
NMax is fixed. In the following implementation, we will
consider each model is linear, meaning a piecewise li-
near approximation is used.

3.2 Multi-Genomic Population

Each individual in the population represent a certain
number of consecutive segments that can be different
than in the other individuals, resulting in a multi-
genomic population.
The cloud of points P is divided in NMax + 1 verti-
cal areas (not necessarily of same width), so that each
point P belongs to an area (see Figure 1). For imple-
mentation purposes, each point is indexed so that the
set of points of P belonging to a vertical area is defined
as a set of indexes.
An individual of the multi-genomic population is en-
coded as follows: each segment is defined between two
points of P belonging to two different areas – not neces-
sarily consecutive. Nevertheless, two consecutive seg-
ments share an extremity point. The chromosome of
an individual encodes the list of the indexes of the suc-
cessive points of P defining the successive segments.
The length of a chromosome is thus Nind + 1 where
Nind is the number of segments of the individual ind.

3.3 Initial Population

Initially, for each individual in the population, the
number of local linear models Nind is set randomly
between 1 and NMax. Then, Nind + 1 areas are chosen
randomly. Then, in each of the Nind +1 vertical areas,
one point is chosen randomly. A linear local model of
the individual ind is defined as a segment between the
chosen point in one vertical area and the chosen point
in the next vertical area.

3.4 Fitness

The fitness is assessed by counting the number of
points of the cloud P that are closest from the piece-
wise linear curve than a distance d. Considering a point
(x, y) of P , the distance is the absolute difference bet-
ween y and the y-coordinate of the local model at x.

3.5 Hybrid One-Point Crossover

The crossover operator can be applied between two
parents Par1 and Par2 representing different numbers
of local models. The crossover point is defined ran-
domly as the right extremity point of a segment of
Par1. At this point, Par1 is split in two. Par2 is also
split in two, at the left extremity point of the segment
closest to the crossover point, that belongs to a vertical
area which index is strictly superior to the one of the
crossover point. Two children are obtained by merging
the split parts of Par1 and Par2.

Tab. 1. Point cloud and MGCE parameters.

� P 2000 σ 0.01
� individuals 50 NMax 20
� max gens 10000 tlocal 68% �inliers

NMax+1

as 30̊ d 2σ
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Tab. 2. Detection of linear curve.

% outliers 50% 80% 90% 93%
� runs 1000 1000 1000 450

< � gens> 2.82 6.80 10.64 28.30
min 2 2 3 3
max 13 27 49 626
StD 1.18 2.79 4.39 8.97

< � models> 10.84 9.28 9.23 8.97
StD 2.41 2.61 2.62 3.15

Tab. 3. Detection of sin curve.

% outliers 50% 80% 90% 93%
� runs 1000 1000 1000 687

< � gens> 3.76 8.69 20.36 28.20
min 2 2 5 9
max 10 21 57 82
StD 1.46 2.92 7.04 10.25

< � models> 13.93 14.25 15.08 16.78
StD 1.76 2.04 1.83 1.51

3.6 Mutation

The mutation of an individual consists, for one ex-
tremity point of one segment chosen randomly, in choo-
sing randomly another point that belongs to the same
vertical area. For the individual ind, the mutation is
performed with the probability 1 − 1/Nind.

3.7 Gene deletion

The gene deletion operator consists in removing one
segment to an individual. To do so, a vertical area
where a segment extremity is defined is chosen ran-
domly. The two segments defined from this extremity
point are fused into a single one by removing the cho-
sen extremity point. The gene deletion is performed
with the probability 1 − 1/Nind in the event where:

– the two local models are aligned:
| angle segments − 180̊ | < as with as an arbi-
trary threshold;

– or the two local models define a peak:
| angle segments | < as. This occurs when the
curve is not smooth; as can thus be set to guide
the search towards more or less smooth curves.

3.8 Gene insertion

The gene insertion operator consists in adding one
segment to an individual. To do so, a vertical area
where no segment extremity is defined is chosen ran-
domly. Then, a point of the cloud P in this area is
chosen randomly. The segment passing through this
area is split in two at the level of this point, resulting
in two segments. For the individual ind, the gene in-
sertion is performed with the probability 1 − 1/Nind

only if the fitness of the segment is below a threshold
tlocal (which indicates the local model may not be well
adjusted to the data before the gene insertion).

Tab. 4. Detection of parabolic curve.

% outliers 50% 80% 90% 93%
� runs 1000 1000 1000 1000

< � gens> 2.62 6.42 14.85 28.31
min 2 2 2 3
max 7 26 104 2059
StD 0.85 2.49 8.68 70.59

< � models> 11.07 9.97 11.08 11.15
StD 2.57 2.72 2.26 2.04

Tab. 5. Detection of y = sin(x2) curve.

% outliers 50% 80% 90% 93%
� runs 1000 1000 1000 238

< � gens> 4.73 10.68 40.10 108.28
min 2 2 3 6
max 58 89 321 1288
StD 3.33 5.90 30.81 653.10

< � models> 14.63 14.96 17.83 18.14
StD 2.24 2.34 1.69 1.44

4 Numerical experiments

4.1 Curve extraction in noisy cloud of points

In order to assess how MGCE performs, we first crea-
ted clouds of noisy curve points (straight line, para-
bola, trigonometric curves). For each curve, a cloud
containing 2000 points was created and scaled in the
[0; 1] range. Uniform noise between [−σ; σ] was added
to the y-coordinate of the inliers (see Table 1). Uni-
formly distributed outliers were added to the cloud.
Table 1 indicates the values of the MGCE algorithm
parameters. Figure 2 presents examples of the curves
extracted. Tables 2-5 indicates how, over a large num-
ber of runs, the algorithm performs for each extrac-
tion and for different amounts of outliers. In all the
cases, MGCE succeeded in extracting the inliers of the
curve. The required average number of generations < �
gens> for convergence increases when the inliers follow
a less smooth curve and when the amount of outliers
increases. With a population of 50 individuals, this ave-
rage number ranges from 2.62 to 108.28 meaning the
number of average required evaluations ranges from
131 to 5414. This suggests the complexity of the al-
gorithm is low. Unsurprisingly, the average number of
local models of the identified solution increases when
the curve to extract becomes less smooth.

4.2 Curve extraction in images

In order to assess the potential of MGCE to extract
inliers with respect to an underlying curve in images,
it was tested on road images. The test images were
proposed in [7]. The feature points were obtained by
a local threshold and symmetrical horizontal gradient
detector. Figure 3 presents examples of results and evi-
dences the ability of MGCE to detect road lane borders
of different shapes (linear, curved, ”S”-shape) ; heuris-
tics about the fitness assessment (to promote smooth

285



(a) 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Examples of curve extraction in noisy
point clouds (93% of outliers). (a) linear ; (b) pa-
rabolic ; (c) sin ; (d) y = sin(x2).

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Examples of lane border detection from
feature points in images. (a-b) linear shape ;
(c-d-e) curved shape ; (f) ”S”-shape.

curves and/or containing a low number of local mo-
dels) are useful in such an application. Only one lane
border is extracted since only one curved is looked for.

4.3 Discussion

The results shown in the previous sections are promi-
sing, both in terms of results of inlier extraction with
respect to a curve of unknown model, and in terms
of complexity. The results could certainly be improved
further in the context of specific applications, through
fine tuning of the parameters of the algorithms. With
a Matlab prototype that could be further refined, the
computing time ranges from fractions of a second to a
few minutes, suggesting real-time performance is pro-
bably reachable with multi-core and/or GPU optimi-
zed implementations. Moreover, many applications im-
plement tracking over time, and it is clear that in such
a case the computing time to update the result would

be significantly lower than for a from scatch search.
The robustness of MGCE is likely to be provided by
its ability to manage sets of different number of local
models in the same optimization run, and to dynami-
cally identify how many are needed : only a few are
used if it is enough ; others are added automatically
if needed. We believe this emerging property inheri-
ted from MGA is a key advantage with respect to ap-
proaches relying on regular GA. Moreover, since less
models are needed than in GA, the decision space is
likely to be explored more efficiently – and the com-
puting time reduced. Comparisons with respect to tra-
ditional robust extraction algorithms (e.g. RANSAC,
M-estimator, Hough transform) on common datasets
would be interesting to draw firmer conclusions.

5 Conclusion

We introduced MGCE, a method to identify the in-
liers with respect to an underlying curve of unknown
model, from a dataset affected by noise and outliers.
This method is based on MGA that extend GA; its
principle relies on the identification of the suitable
number of local models that are automatically adjusted
to the relevant areas of the dataset. Numerical expe-
riments highlight promising overall performance. Fu-
ture work will investigate the use of curved local mo-
dels (e.g. polynomial, splines) instead of the linear one.
Also, a generalization of MGCE could be elaborated,
aimed at extracting any kinds of patterns – and not
only curves of the form y = f(x).

Aknowledgments

The authors are grateful for the financial support of
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