
Document Image Dataset Indexing and Compression Using
Connected Components Clustering

Houssem Chatbri∗ and Keisuke Kameyama†
∗Department of Computer Science, Graduate School of Systems and Information Engineering

†Faculty of Engineering, Information and Systems
∗†University of Tsukuba, Japan

∗†{chatbri,kame}@adapt.cs.tsukuba.ac.jp

Abstract

We present a method for document image dataset
indexing and compression by clustering of connected
components. Our method extracts connected compo-
nents from each dataset image and performs compo-
nent clustering to make a hash table that is a com-
pressed indexing of the dataset. Clustering is based on
component similarity which is estimated by comparing
shape features extracted from the components. Then,
the hash table is saved in a text file, and the text file
is further compressed using any available compression
methodology. Component encoding in the hash table is
storage efficient and done using components’ contour
points and a reduced number of interior points that are
sufficient for component reconstruction. We evaluate
our method’s performances in indexing and compres-
sion using four document image datasets. Experimen-
tal results show that indexing significantly improves ef-
ficiency when used in document image retrieval. In
addition, comparative evaluation with two compression
standards, namely the ZIP and XZ formats, show com-
petitive performances. Our compression rates are below
20% and the compression errors are very low being at
the order of 10−6% per image.

1 Introduction

Document image datasets are a widespread medium
of storing information. Nowadays, such datasets are
becoming more and more large scale due to the avail-
ability of large storage media [8]. The research on doc-
ument image analysis is very active and has led to nu-
merous interesting applications [9].
Document indexing has been used in applications

such as document retrieval for the sake of efficiency
[3]. Indexing methods produce a representation of the
data that is optimized for online querying. In addition,
indexing methods have been used for dataset compres-
sion by exploiting data redundancy [7].
Approaches for document image compression using

redundant information have been proposed. Haffner
et al. presented a method for high resolution color
document image compression by separating the im-
age into text, pictures, and background [4][5]. Then,
specific compression is applied to each category. For
text compression, they use character pattern matching
and substitution. Shiah and Yen presented a method
for Chinese document image compression [11]. First,
image segmentation is done using a priori knowledge
about the documents. Then, Chinese characters are
extracted using specific techniques of stroke merging.

i
j

i

Figure 1. Similarity-based component clustering.

Compression is done using specific feature extraction
and matching. Imura and Tanaka presented a similar
method and evaluated it using English and Japanese
documents [6]. They obtained language-dependent re-
sults. In both methods [11, 6], the compression error
is not evaluated with objective metrics.
In this work, we present a method for document im-

age dataset compression and indexing using redundant
information in document images, as a part of our ongo-
ing research on content-based document retrieval [1, 2];
We are designing a system for document retrieval that
allows users to introduce handwritten queries. Then,
the system retrieves the document images where the
query is spotted. In order to reach online perfor-
mances, dataset indexing should be implemented.
The proposed method is designed for document im-

ages where connected components high redundancy is
a fair assumption. Our method exploits redundancy by
performing clustering of similar connected components
extracted from document images (Fig. 1). Comparing
to previous techniques, our method stands out with
the following aspects:

• Our algorithm is based on similarity estimation
between connected components instead of char-
acter pattern images (Sec. 2.1), which makes it
language-independent and more general.

• We introduce an optimized component encoding
mechanism that uses some of the components’
points and not all of them (Sec. 2.2).

• We save the compressed indexing as a text file
that is further compressed, which enhances com-
pression performances (Sec. 2.3).

We evaluated the proposed algorithm in indexing
and compression. Experimental results demonstrate
the usefulness of our algorithm as an indexing process
for document retrieval (Sec. 3.2), and competitive per-
formances comparing with two compression standards,
namely the ZIP and XZ formats (Sec. 3.1).

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN10-9

267

2 The Proposed Approach

The proposed algorithm takes as input a document
image dataset, and produces a compressed file using se-
quential clustering of connected components and text
file compression. The algorithm proceeds as follows:
The document image dataset contains M images. For
each image Ii, the connected components, {Cj}Ni

j=1,
are extracted, where Ni refers to the number of compo-
nents in Ii. Then, a discrete function f(Cj) returns the
cluster index corresponding to Cj if it has been already
registered in hash table Table, or -1 otherwise. Con-
sequently, Cj is registered in Clusterk, or a new clus-
ter Clusterk0 is created for Cj . This processing pop-
ulates Table with clusters of connected components.
Then, Table is saved in a text file TxtF ile. Finally,
the output CompressedF ile is produced by compress-
ing TxtF ile using any text compressing algorithm.
In the following, we explain the mechanism for com-

ponent similarity estimation (Sec. 2.1), component en-
coding (Sec. 2.2), and hash table compression (Sec.
2.3).

2.1 Component similarity estimation

Similarity between components is estimated using
shape features extracted from connected components
as done in [1][2]: For a component Cj , a feature vector−→
Vj is extracted by calculating the distribution of pixels
in polar coordinate where the origin is the component’s
centroid. The similarity between two components Ca

and Cb is equivalent to the Histogram Intersection be-
tween their corresponding vectors, which is calculated
as follows:

S(Ca, Cb) =
R−1∑
r=0

Θ−1∑
θ=0

min(V a
r,θ, V

b
r,θ) (1)

where R and Θ refer to the radial and angular number
of sections. Two components Ca and Cb are considered
similar if they satisfy S(Ca, Cb) > δ, where δ ∈ [0, 1] is
a similarity threshold.
Using this feature extraction and matching mecha-

nism, the function f(Cj) is implemented as follows:

f(Cj) =

{
k, if ∃Ck[S(Cj , Ck) > δ]

−1, otherwise
(2)

where Ck refers to the cluster center of Clusterk.

2.2 Component encoding

For the sake of optimal compression, the number of
points in a component is reduced before saving it in the
text file TxtF ile. The component encoding algorithm
extracts the necessary points to reconstruct a compo-
nent. For a component Cj , the contour points and
several non-contour, or interior points, are sufficient
to reconstruct the component by connected component
analysis. Therefore, only those points are needed to be
saved. Fig. 2 shows examples of original components
and their corresponding reconstruction points.
Algorithm 1 shows the component encoding steps:

ListRj refers to the list of points needed for component
reconstruction. First, the contour CP and an interior

point IP are extracted, and added to ListRj . Then, the

reconstructed component CR
j is produced using ListRj .

L points {Pl}Ll=1 which exists in Cj but not in CR
j are

detected. Then, one point from {Pl}Ll=1, P1, is added
to ListRj . The iterations of producing CR

j are repeated

until CR
j and Cj match.

Algorithm 1 Component encoding

define ListRj : List of Points in the jth component

CP ← ContourPoints(Cj)

IP ← InteriorPoint(Cj)

ListRj ← CP , IP

while stop = false do

CR
j ← ReconstructComponent(ListRj)

{Pl}Ll=1 ← DifferencePoints(CR
j , Cj)

if {Pl}Ll=1 is empty then

stop = true

else

ListRj ← P1

end if

end for

2.3 Hash table compression

The hash table, Table, is saved in a text file that
is used of image reconstruction. In the text file, a
header contains information about the images’ names
and sizes, and the rest of the file contains information
about clusters which are the location of the connected
component (centroid and image index), interior points
and contour points, and locations of similar connected
components.
Afterwards, the text file is compressed using any

available text compression mechanism to produce a
compressed indexing of the document image dataset.
The idea behind using a text file is to exploit the char-
acter redundancy inside a plain text which is a main
feature of text compression algorithms. After com-
pressing the text file, the result is a binary file that
has a reduced size.

3 Experimental results

We evaluate the algorithm’s performances in terms
of compression and indexing. Throughout the experi-
ments, we set the component descriptor dimensions to
R = 3 and Θ = 12, and the similarity threshold to
δ = 0.99. In the following, we call our method C3 as
abbreviation to Connected Components Clustering.

3.1 Compression performances

3.1.1 Evaluation procedure

We used three printed binary document image
datasets that have been collected as follows:

268

• Dataset 1: 356 document images taken from the
book of abstract of the 2014 World Congress on
Computational Intelligence. The images are com-
pressed in PNG-ZIP format, their size is 2479 ×
3508 and their resolution is 300 dpi.

• Dataset 2: 159 document images taken from the
book ”Memoirs of John R. Young Utah Pioneer
1847”1. The images are compressed in PNG-ZIP
format, their size is 2489 × 3518 and their resolu-
tion is 300 dpi.

• Dataset 3: 1320 document images taken from the
book ”Soothill-Hodous: A Dictionary of Chinese
Buddhist Terms”2. Images contain English and
Chinese words. The images are compressed in
TIFF-Group4 format, their size is 2479 × 3508
and their resolution is 300 dpi.

The evaluation procedure consists of calculating the
size of the compressed file and the error rate. The
error rate ξ quantifies the number of pixel differences
between the reconstructed image and its corresponding
original image over the dataset, and it is calculated as
follows:

ξ =
1

M

M∑
i=1

1

H ×W

H−1∑
x=0

W−1∑
y=0

|IRi (x, y)− Ii(x, y)| (3)

where M is the number of images in the dataset, Ii
and IRi refer to the original and reconstructed images,
and H and W are the height and width of Ii.
We compare our method, C3, combined with another

standard compression method, namely ZIP or XZ [10],
against using the standard compression method di-
rectly on the dataset.

3.1.2 Results and discussion

Compression performance

Table 1 shows the compression results: For all three
datasets, C3 achieved higher compression comparing
with using the ZIP or XZ compression directly. The
best compression came with combining our method
with XZ compression, in which case the compression
rates (i.e. the size of the compressed file divided on
the size of the original dataset) were respectively 6.4%,
2.2% and 16.6%. As for ZIP and XZ, their perfor-
mances is explained by the fact that the images are
already compressed. Therefore, no further significant
compression can be achieved.
The performance of the proposed method is affected

by the component redundancy in the document image
dataset (Fig. 3). This can be seen particularly by the
compression rates of Dataset 1 and Dataset 2, being
6.4%, 2.2% respectively. In case of these datasets, the
number of redundant components is at the order of
103. For Dataset 3, the compression rate is 16.6%, as
the number of redundant components is at the order of
102. The performances are also due to the optimized
component encoding using a reduced number of points.
Table 1 shows the encoding ratio which is equal to the
number of encoded points divided by the initial number

1Available at http://www.gutenberg.org/ebooks/46391
2Available at http://dev.ddbc.edu.tw/glossaries/

(a) (b)

Figure 2. Reconstruction points in components
(contour points are highlighted in green and in-
terior points are highlighted in red): (a) In case
of a nearly thin component, the number of en-
coded points is not significantly reduced. Here,
encoding ratio = 73%. (b) In case of a thick
component, the number of encoded points is sig-
nificantly reduced. Here, encoding ratio = 48%.

of points. The encoding ratio is affected by the thick-
ness of connected components (Fig. 2); The thicker
a component is, the less number of points needed for
reconstruction comparing with the initial number.

Information loss

The proposed compression method is lossy, and that
is due to the tolerance of the descriptor used to es-
timate component similarity (Sec. 2.1). In our ex-
periments, the error rate values were very low and we
observe that it does not affect the document image
readability. The component similarity threshold δ can
be used as a parameter that controls the trade-off be-
tween the compression rate and the error rate.

3.2 Indexing performances

We implemented the proposed algorithm as an in-
dexing mechanism for our ongoing document retrieval
project [1, 2]. Then, we conducted retrieval exper-
iments using Zanibbi and Yu’s dataset [12]. This
dataset contains 200 document images taken from a
conference proceedings, and 240 printed and handwrit-
ten query images of mathematical expressions.
A core part of our document retrieval algorithm

is comparing the connected components of the query
against the connected components of the dataset im-
ages. In case of non-indexed implementation, all com-
ponents of the document images are considered. While
in case of an indexed implementation, only the compo-
nents forming the clusters are considered.
We report the average duration of a component com-

parison process using a desktop computer equipped
with a 3.40 GHz CPU. In case of a non-indexed imple-
mentation, the average duration to run a comparison
was equal to 3, 579 ms. While in case of indexing, the
average duration was equal to 705 ms. The improve-
ment in efficiency is then equal to 507%.

4 Conclusion and future work

In this work, we present a method for document
image dataset indexing and compression by clustering
of connected components. Our method extracts con-
nected components from each dataset image and per-
forms sequential clustering to make a hash table that
is a compressed indexing the dataset. Then, the hash
table is saved in a text file, and the text file is further

269

Table 1. Compression results using three datasets

Dataset
Original Compression Compression Error rate No. of No. of Encoding
size method size ξ components clusters ratio

Dataset 1 107 MB

ZIP 102.7 MB

1.5 × 10−6 2 713 162 1 031 94.2 %
C3-ZIP 10.5 MB

XZ 102.5 MB
C3-XZ 6.9 MB

Dataset 2 50.2 MB

ZIP 34.4 MB

0.1 × 10−6 414 854 239 75.7 %
C3-ZIP 1.7 MB

XZ 34.2 MB
C3-XZ 1.1 MB

Dataset 3 44 MB

ZIP 37.6 MB

0.3 × 10−6 1 835 719 10 792 52.4 %
C3-ZIP 13.3 MB

XZ 26.9 MB
C3-XZ 7.3 MB

Figure 3. Illustration of component redundancy
in a document image taken from [1] The clusters
components are highlighted in black, and the re-
dundant component are gray.

compressed using any available compression method-
ology. Component encoding in the text file is done
using a reduced number of points which are sufficient
for component reconstruction.
Experimental results show that our algorithm im-

proves efficiency when used for indexing in a content-
based document retrieval application, and that the
compression performances are competitive. Compres-
sion produces very low compression errors that do not
compromise the document readability.
We identify several directions to extend and improve

the proposed method: In the present paper, centers of
clusters are connected components that are extracted
using pixel connectivity analysis, and centers similar-
ity is estimated using shape features. In other appli-

cations, centers of clusters and centers similarity can
be defined according to the image classes (e.g. tex-
ture patterns in case of texture images, strokes in case
of handwritten signature images, etc.). When image
variations such as rotation and scale change are antic-
ipated, the centers descriptor can be tuned or a robust
descriptor can be used. Moreover, the centers similar-
ity threshold can be made loose to account for compo-
nent variations caused by noise.

References

[1] H. Chatbri et al. An application-independent and
segmentation-free approach for spotting queries in doc-
ument images. In IEEE ICPR, 2014.

[2] H. Chatbri et al. A modular approach for query spot-
ting in document images and its optimization using
genetic algorithms. In IEEE CEC, 2014.

[3] D. Doermann. The indexing and retrieval of docu-
ment images: A survey. Computer Vision and Image
Understanding, 70(3):287–298, 1998.

[4] P. Haffner et al. High quality document image com-
pression with DjVu. Journal of Electronic Imaging,
7(3):410–425, 1998.

[5] P. Haffner et al. DjVu: Analyzing and compressing
scanned documents for internet distribution. In IEEE
ICDAR, pages 625–628, 1999.

[6] H. Imura and Y. Tanaka. Compression and string
matching method for printed document images. In
IEEE ICDAR, pages 291–295, 2009.

[7] D. Karpman et al. Lidar depth image compression us-
ing clustering, re-indexing, and JPEG2000. In SPIE
Defense, Security, and Sensing, pages 80370G–80370G.
International Society for Optics and Photonics, 2011.

[8] S. Marinai et al. Digital libraries and document im-
age retrieval techniques: A survey. In Learning Struc-
ture and Schemas from Documents, pages 181–204.
Springer, 2011.

[9] G. Nagy. Twenty years of document image analysis in
PAMI. IEEE PAMI, 22(1):38–62, 2000.

[10] D. Salomon. Data compression: the complete refer-
ence. Springer, 2004.

[11] C.-Y. Shiah and Y.-S. Yen. Compression of chinese
document images by complex shape matching. The
Computer Journal, 56(11):1292–1304, 2013.

[12] R. Zanibbi and L. Yu. Math spotting: Retrieving
math in technical documents using handwritten query
images. In IEEE ICDAR, 2011.

270

