
Automatic Grape Bunch Detection in Vineyards for Precise
Yield Estimation

Scarlett Liu Mark Whitty
Stephen Cossell

School of Mechanical and Manufacturing Engineering,
University of New South Wales, Sydney 2052, Australia

sisi.liu@unsw.edu.au, m.whitty@unsw.edu.au, macgyver@unsw.edu.au

Abstract

Precise yield estimation using image processing
techniques has been demonstrated conceptually on a
small scale. Expanding these solutions to larger scale
applications requires significant computational power,
which need to analyze the entirety of all captured
image data. However, many images captured for yield
estimation in these processes only contain small areas
of useful features for analysis. This paper introduces
an image processing algorithm combining color and
texture information, and the use of a support vector
machine, to accelerate fruit detection by isolating
useful features in images. Experiments carried out
on two varieties of red grapes (Shiraz and Cabernet
Sauvignon) demonstrate an accuracy of 87% and recall
of 90%. This method is also shown to remove the
restriction on the field of view and background, which
limited existing methods and is a first step towards
precise and reliable yield estimation on a large scale.

Keywords: Bunch Detection, Image Processing, Low
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1 Introduction

Precise yield forecasting is predicted to help the Aus-
tralian Wine Industry save $100 million per year as this
forms the basis of the wine making process through to
wine marketing and sales. As a result, accurate yield
estimation and forecasting is in high demand in the
viticulture industry both for practical and academic
reasons. Nowadays, yield estimation is still performed
manually by human hands worldwide, and its precision
depends on the scalability of hand sampling. Large
scale sampling is not a guarantee of successful yield
forecasting as some vineyards are not uniform [3] and
many variables can affect approaches such as temper-
ature and water availability. At the same time, thand
sampling is tedious, expensive, inaccurate and has hu-
man bias (humans tend to choose healthier and bigger
bunches when randomly sampling in the field [15]). So
an automatic yield estimation system based on image
processing has become a mainstream research topic in
recent years. For tackling this problem, Nuske et al.
[12] developed a prediction method by detecting the
berry number from images taken in a vineyard. This
paper applied a Radial Symmetry Transform (RST)
[11] to find keypoints, which are potential berry loca-
tions, as the initial step for later feature analysis. This
novel work was the first to process a large collection of
ground truth vine images to generate a yield estimate.
However, before the keypoints are extracted, there is

no image size reduction. The problem is that the com-
putational cost of high level image processing methods
becomes slower with increased image size.

In reality, for accurate yield estimation, images are
usually captured by a vehicle mounted camera. The
entire height of a vine needs to be captured and hence
a wide field of view is chosen to ensure nothing is
missed. As a result, other interrelated objects such
as rocks, posts, grass, and other grapevines behind the
current row are visible in images. Since the berry size
is small relative to the field of view, a berry detail is vi-
tal to late yield calibration [10], high resolution images
need to be captured. High resolution images are slow
to process when certain high level image processing
methods, such as RST and Zernike Moments Extrac-
tion [8], are applied. For the required field of view, im-
ages captured in vineyards contain around 70% mean-
ingless information for yield estimation. This means
70% of the processing time is redundant. Therefore,
this paper aims to reduce the relevant image size by
extract relevant windows before extracting details of
berries in the images for accelerating the image pro-
cessing tasks. Extracting relevant windows for further
processing also allows an estimate of the number of
bunches to be made.

In 2011, Correa et al. performed a comparison [1] of
different Fuzzy C-Means (FCM) clustering algorithms
to extract features from vineyard images. The 20 seg-
mented images achieved an accuracy of 85%, 87% and
88% by Robust Fuzzy Possibilistic C-Means, FCM and
FCM-GK (FCM with Gustafson-Kessel) methods re-
spectively. In the next year, another two extended pa-
pers [1, 6] by the same research team combined Sup-
port Vector Machines (SVM), K-Means and the Scale-
Invariant Feature Transform (SIFT) to cluster differ-
ent objects in vineyard images. In the same year, a
classification of grapevine structures from uncalibrated
image sequences was presented by Dey et al. [4]. In
this paper, Structure-From-Motion (SFM) was imple-
mented to build a 3D reconstruction of grapevines as
a first step, then a saliency feature was applied for
traversability analysis of point cloud data. An SVM
and a conditional random field (CRF) were adopted
for spatially smoothing the 3D model in the final step,
improving the accuracy of classification. But Dey’s al-
gorithm requires 3D point cloud data, and classifying
each pixel into bunch or non-bunch instead of count-
ing bunch number. Mahalanobis measures were ap-
plied in papers [5, 16] for grape, branch, leaf and back-
ground classification. The accuracy of classification in
the aforementioned papers were high, but the compu-
tational cost was expensive, especially for high resolu-
tion images, and the accuracy was based on pixel level.
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In addition, except for the work presented by Dey et
al. [4], all images tested in these papers had a white
background with perfect view proportion and the scale
of tested images was small. For bunch detection under
field conditions the procedure of classification becomes
time consuming and complicated. At least 50% of the
computation time is wasted on clustering useless in-
formation so it is not practical for yield estimation,
considering the size of the vineyard.

2 Image Processing Algorithm

In this paper, the proposed bunch segmentation al-
gorithm contains 3 main steps: image pre-processing,
training on a subset of images and segmentation on the
test set. For both groups (training and testing), mor-
phological operations are applied in HSV color space
for extracting the initial bunch hypotheses, and then
a shape filter is utilized to exclude incorrect bunches.
Next, a group of true bunch areas are picked by hand
as the training set for extracting the features. An SVM
[2] is applied to segment bunches in the test set (the
remaining images). Figure 1 demonstrates the pro-
cess flow for bunch segmentation and data analysis.
The images taken in Block 11 were used to develop the
algorithm.

Figure 1: Bunch detection flow chart proposed in this pa-
per.

2.1 Image Pre-processing

Image pre-processing consists of first thresolding an
image on the H and V channels, which removes around
80% of irrelevant pixels. Otsu’s method [13] is applied
to the H and V channels to detect the thresolding
value, which is dependent on illumiation conditions.
Using the HSV color space allows easy detection of the
difference between vine and sky regions, as seen with
the distinguishable local minima and the dashed line
in Figure 2d. The sky area can also be consistently
detected from the V channel, as seen in Figure 2f.
In contrast, the B channel is not a good indicator of
irrelevant regions as there are more local maxima and
there is large inconsistency between images, as seen
in Figure 2c. Potential bunch areas are obtained by
calculating the intersection between the H and V bi-
nary images. Next several morphological operations
are performed on the resulting image to reduce noise.
A new filter introduced in this paper is then applied
to remove unusual detected bunch shapes and is based
on the aspect ratio of the detected bounding box of a
bunch area, as seen in Figure 3. Acceptable aspect
ratios are usually between 0.25 and 2.
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Figure 2: Six histograms in RGB and HSV color space of
a sample image.

Figure 3: Filtering: blue arrows point out where filtered
out bunches were.

2.2 Feature Selection

A total of 80 images take from Block 11 were pre-
processed with some false positive areas identified in
some images, as seen in Figure 3. Each identified re-
gion was then manually identified as being correct or
incorrect. For each bunch detected via pre-processing,
a 58 dimensional feature vector is extracted and con-
tains features such as closeness, solidity, extent and
compactness, the texture information in each channel
in RGB, HSV and L*a*b color spaces.
In order to simplify the classifier model, reduce mem-

ory usage and improve the computational speed, the
ReliefF algorithm [14] and sequential feature selection
[9] were applied for decreasing the feature dimensions.
The ReliefF algorithm uses k-nearest neighbors to cal-
culate the attribute importance and attribute weights
for each feature. It demonstrates that first 20 pre-
dictors have positive weights so 20 significant features
were selected. As for sequential feature selection, the
misclassification rate was used as the criterion for min-
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imising the feature subsets. To be more specific, se-
quential forward selection (SFS) is utilized by sequen-
tially adding features to a feature candidate set. The
criterion is continually calculated until the criterion
stops increasing and 21 features are selected by SFS.
The final feature candidates (17 dimensions) are de-
cided by the intersection between two groups of fea-
tures and are described as follows:

• Closeness: Scalar specifying the ratio between
the y-position (y coordinates in an image) of
each initial bunch and average y-position for all
bunches in one image.

• Solidity [7]: Scalar specifying the proportion of
pixels in the convex hull that are also in the region.

• Extent [7]: Scalar specifying the ratio of pixels in
the region to the total bounding box.

• Compactness [7]: Scalar specifying the ratio of
perimeter to area of the region.

• Texture [7]: Average gray value of HSV, average
contrast of HSV, measure of smoothness of HSV,
third moment of HS, measure of uniformity of H,
entropy of HV

A closeness value is also a newly defined feature in
this paper, and figures in this paper show that most
bunches are located in a certain position in the verti-
cal direction. For each image, Otsu’s method [13] is
applied again to divide the y-positions of all initially
detected bunches into two groups. The reference y
value is the average y value that is computed from the
larger group. The closeness is the ratio between the y
value of the potential bunch and the base y value.

2.3 Training Size Selection

After decreasing the dimension of the feature vec-
tor, a SVM was implemented to analyse the size of
the training set as part of the learning stage. The
80 images pre-processed using the method outlined in
Section 2.1 were use to train the SVM using train-
ing group sizes in intervals of 4 from 4 to 76 images.
For every potential bunch in the training set, a feature
vector of 17 features selected in Section 2.2 and its
response of being a valid bunch or not (true or false)
are used as a classifier. The confusion matrix for each
training set is calculated for classification performance
analysis based on classifications of true positive (TP),
true negative (TN), false positive (FP) and false nega-
tive (FN).
In order to calculate the correct number of images for
the training step, accuracy (ACC), recall (True Pos-
itive Rate: TPR) and precision (Positive Predictive
Value: PPV) are used as justification by applying the
SVM classifier obtained from the training step:

ACC =
TP + FP

TP + TF + FP + FN
(1)

TPR =
TP

TP + FN
(2)

PPV =
TP

TP + FP
(3)

All results for each training set are illustrated in
Figure 4 and Figure 5. It is clear that 16 images
is sufficient for achieving 90% accuracy for bunch clas-
sification.
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Figure 4: Accuracy for training size selection.
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Figure 5: Precision for training size selection.

3 Experimental Materials and Data Scope

Field experiments were conducted in Camatta Hills,
California, with a total of 160 images taken under nat-
ural illumiation conditions, the details of which are
given in Table 1. All images were photographed using
an OLYMPUS Camera (Model: SP600UZ) with focal
length 5 mm, internal flash, automatic mode and a res-
olution of 3968× 2976 pixels. Four images were taken
for each sampled vine, including two arms on each side
(East and West), as shown in Figure 6.

Table 1: Image data information, properties of vineyards
where experiments conducted.

Block Images Sampled Photo Cultivar
Vine Date

11 80 20 28 Sep. 2013 Shiraz

19 80 20 09 Oct. 2013 Cabernet
Sauvignon

4 Experimental Results

The selected image features and a training set of 16
images were applied to another group of images cap-
tured in Block 19 at a different time of day, following
the same procedure shown in Figure 1. The detected
bunch regions are shown in Figure 7.
To avoid overfitting, for each image of Block 19,

bunches were manually labelled as true or false
bunches. Then K-fold cross-validation was applied for
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Figure 6: Photography arrangement.

Figure 7: Classification: green boxes are classified as true
bunches while pink boxes are classified as false bunches.

validating the detection algorithm. The fold number
was set to 5, as there were 16 images for training.
All raw data was tested by cross-validation for achiev-
ing the real truth in the vineyard for yield estimation.
As such, some images in these 80 images do not con-
tain any bunches or just contain several small bunches.
This meant that the training size was smaller than 16
images in some cases. However, it still obtains the av-
erage accuracy and recall of 87% and 90% respectively
by using 5 fold validation.

5 Conclusions and Outlook

This paper presented an method for efficiently de-
tecting bunch areas in photographs. Simple features
were extracted to reduce computational load and veri-
fied against manual labelling to properly evaluate clas-
sification results. For 16 images used for training,
the algorithm was able to classify bunch areas with
87% accuracy and 90% recall. As the algorithm was
trained on photographs of Shiraz and tested on Caber-
net Sauvignon, both of which take at different times of
the day, this proves that the algorithm works across dif-
ferent cultivar and different lighting conditions, a key
limitation of existing methods. The algorithm, how-
ever is curretly limited to varieties of purple grapes
and an area may contain more than one bunch. Im-
proving on these limitations is planned as future work,
but the proposed algorithm already allows bunch area
detection more accurately and on a larger scale, due to
lower computation cost, than existing methods in later
stages of the season.
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