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Abstract

In detector adaptation, the quality and quantity
of collected online samples are of fundamental impor-
tance, yet have not been thoroughly investigated. In
this paper, we present an efficient detector adapta-
tion approach with a novel unsupervised online sample
collection scheme, which can obtain sufficient aligned
samples in a specific video. Unlike other methods
that collect samples by only leveraging the detection
confidence or track, we select aligned samples by evalu-
ating the alignment scores using a pixel-wise Gaussian
Model. Since this selection would lead to an inadequate
number of positive samples, we synthesize positive sam-
ples by composing the pedestrian foreground in each
aligned positive samples with the scene background at
different locations. In this way, we can obtain a large
number of qualified aligned positive samples encoding
new scene information. With sufficient samples, we
adopt a simple yet effective method to obtain an adap-
tive detector, which not only preserves the effective part
of the offline boosted detector but also well adapts to
the new scene by adding some new trained classifiers.
Experiments demonstrate the efficacy of our sample
collection scheme and that our approach significantly
improves the performance.

1 Instruction

Object detection is an important task in computer
vision and typically an object detector is trained from
a large set of labeled samples. Unfortunately, the
trained detector would inevitably suffer from a large
performance degradation when it is applied to a new
scene, especially when the scene is very different from
the original training scene. Therefore, how to adapt
such an offline detector to a specific novel scene, i.e.
detector adaptation, becomes very important and has
attracted much attention recently.
In detector adaptation, online samples from the new

scene are required. Some previous methods collect
online samples in a supervised [1, 2] or semi-supervised
[3, 4] way, which require manual labelling. There are
some approaches [5, 6, 7] attempting to obtain online
samples with no supervision. For example, [5] uses the
offline detector to collect samples with high detection
confidences as online positive samples. In [7], they
combine the offline detector and a tracker to collect
online samples. However, these online samples col-
lected using unsupervised methods may not have been
well spatially aligned. In addition, only discarding
unaligned samples is also infeasible, since it leads to
a large decrease of the number of positive samples,
thereby making them insufficient for adaptation.
With collected online samples, some approaches such

as incremental learning [1, 6] which optimize the base-

line detector using gradient descent methods, while
others attempt to design an additional mechanism such
as SVM classifier [4] and random fern classifier [7].
We believe that, it is preferable to directly obtain
an adaptive detector rather than to add some post-
processing schemes. Therefore, our adaptive boosted
detector replace the inadequate layers with new trained
classifiers while preserving the effective part of the
offline detector. Compared with incremental learning
[1, 6], our method is simple but effective.
In this paper, we propose an efficient boosted pedes-

trian detector adaptation approach with a novel un-
supervised online sample collection scheme. Given
a training video from a new scene, we first collect
online positive samples by leveraging both detection
and tracking results. Then we select aligned samples
using a pixel-wise Gaussian Model. For each confident
aligned sample, we segment the pedestrian foreground
out by reconstructing the foreground mask from back-
ground subtraction using a dictionary of pedestrian
binary masks. Then we compose the pedestrian fore-
ground with the background centered at a different
position to generate a synthesized sample. In this way,
we can obtain sufficient aligned samples and encode
the background information in the new scene. As for
online negative samples, we collect them both around
the pedestrian and uniformly in the background. With
these online samples collected, we adapt the offline
detector by cutting some rest strong classifiers of the
offline boosted detector. The flowchart of our approach
is illustrated in Fig. 1.

2 Online Sample Collection

2.1 Collecting Aligned Positive Samples

Collecting positive samples with the offline detector
is very likely to lose scene specific positive samples.
Meanwhile, tracking based sample collection is able
to collect some lost detection samples, but it is prone
to noise and may not spatially align with the ground
truth. Taking all these factors into consideration, we
first use a tracker[8] to collect online positive samples
and then use the offline detector to further select the
tracks with high confidence scores. At last, we select
aligned positive samples with estimating spatially align
errors within each track.
First, the offline detector is applied at a high preci-

sion setting for each frame in the video and we obtain
all the detection responses {Sk}, then the tracker is
used to get all tracking sequences {Ti|i = 1, 2, ...,m}.
Ti is a tracking sequence, which is represented as
Ti = {ti,j |j = 1, 2, ..., n}, where ti,j is the jth track-
ing response in the tracking sequence Ti. Each ti,j
is a combination of tracking window wi,j , frame in-
dex fi,j and confidence score ci,j , denoted as ti,j =
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Figure 1. Overview of our approach.

{ωi,j , fi,j , ci,j}. We compute the overlap between the
detection responses and tracking responses for each
frame. The confidence score for a tracking response
ti,j to be a positive online sample is calulated by

ci,j =

{
1, O(Sk, ti,j) > θ1

μci,j−1, O(Sk, ti,j) ≤ θ1
(1)

where O is the overlap of the bounding boxes of Sk

and ti,j , θ1 is a threshold value, μ is the confidence
lost coefficient and μ < 1. In this case, if the previous
tracking response has a high confidence, it is very likely
that the current sample is a confident sample.
We select some tracking responses ti,j with a high

confidence score within each track Ti, and thus form
a new subsequence T ′

i . For each tracking subsequence
T ′
i , we resize all the responses in the subsequence T ′

i
to the same size and assume that the pixels’ value at
the same position obeys Gaussian distribution, which
results in a pixel-wise Gaussian Model for each track.
It is reasonable because all the pedestrians in the same
tracking sequence are the same pedestrian. Then we
can estimate the probability of each sample to be an
aligned sample in the tracking sequence as follow:

Φ(t′i,j) =
∑
x,y

N(ωi,j(x, y)|μ′
i(x, y),Σ

′
i(x, y)) (2)

where N(ω|μ,Σ) is the Gaussian function, (x, y) is the
position. μ′

i(x, y) and Σ′
i(x, y) and the average value

and the variance of pixels at the position (x, y).
We select the positive samples with Φ(t′i,j) > ε as

aligned positive samples, where ε is a threshold and

ε =
η

|T ′
i |

∑
t′i,j∈T ′

i

Φ(t′i,j) (3)

where η is a coefficient. In this way, we can get aligned
positive samples Po.

2.2 Synthesizing Positive Samples

In a new scene, the amount of individuals in the
training video is limited. And the background infor-
mation is very important. In order to collect sufficient
positive samples, we synthesize positive samples by
composing the segmented pedestrian area of aligned
positive samples with the scene background. In order
to segment the pedestrian, we first apply background

subtraction to get a coarse foreground mask, then
refine the mask using a dictionary of pedestrian binary
masks. We also obtain an edge-preserving mask by
Guided Image Filtering [9]. At last, we merge two
binary masks together to get a mask that has both
good shape and edge. A large number of synthesized
samples can be generated by merging the segmented
pedestrian area with scene background at different
positions.

Refining the pedestrian mask: Given a pedestrian
binary mask F from the background subtraction, we
refine it using a dictionary of pedestrian masks. Specif-
ically, we follow the method in [10] for pedestrian mask
dictionary learning. Given a training set of pedestrian
masks X = [x1, x2, ..., xn], we learn a dictionary
D = [d1, ...., dm] by minimizing the reconstruction
error

min
D,α

1

n

n∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1) (4)

where λ is a regularization parameter, and αi is a
sparse coefficient. Then with the learned dictionary
D = [d1, ...., dm], for each pedestrian binary mask F ,
we can obtain a reconstruction parameter β by Lasso,
expressed as

min
β

‖F −Dβ‖22 s.t. ‖β‖0 ≤ s (5)

where β contains sparse coefficients. s is a parameter
to control sparsity. Then the reconstructed foreground
mask R can be presented as R = Dβ, which usually
has a good pedestrian shape. But it often has minor
flaws at the pedestrian edge. To get a more exact
and smooth pedestrian edge, we use Guided Image
Filtering [9] to do edge-preserving smoothing.

Obtaining edge-preserving mask: The model of
Guided Image Filtering [9] assumes a local linear rela-
tionship between the guidance I and the filter output
Q

Qi = ahIi + bh, ∀i ∈ Wh (6)

where Wh is a window centered at the pixel h. ah, bh
are some linear coefficients depending on Wh and an
input R. It ensures that the output image Q can have
an edge only when the guided image I has an edge.
We use the original positive sample map I as the

guided image and use the reconstructed mask R as
the filtering input. Even when the reconstructed mask
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has an inaccurate edge, we can get the exact edge by
doing edge-preserving smoothing.

Merging two masks: We merge the reconstructed
mask R and the filtering mask Q to get the final
aligned positive segmentation mask A by

A(x, y) = min(Q(x, y),R(x, y)), (7)

where (x, y) is the position, A(x, y),Q(x, y),R(x, y)
are the pixels at the positions (x, y) for A,Q,R re-
spectively. In this way, the segment mask has both
good edge and good shape.

Synthesizing samples: we use the matting method
to synthesize new positive samples, which regards the
segment mask A as the pixel’s opacity component.
Then a synthesized sample P can be formulated as

Pz = AzIz + (1−Az)Bz, (8)

where z = (x, y) is the position, I andB are the pixel’s
foreground and background colors.

2.3 Negative Samples

The negative samples are collected from the back-
ground and around pedestrians. In particular, we
collect negative samples on the background generated
by background subtraction, denoted as Nb . And we
also collect negative samples around the pedestrian
area, which are referred as Nr. Each s ∈ Nr is
collected using the following equation:

O(t, s) < θ2, ∀t ∈ Po and O(t, s) > θ3, ∃t ∈ Po

(9)
where θ2 and θ3 are threshold values, Po is the online
aligned positive sample dataset. Then the negative
sample dataset N = Nb

⋃
Nr.

3 Training for Adaptation

A boosted cascade detector can be formulated as

F (x) =
K∏
i=1

fi(x) (10)

where fi(x) is the i-th strong classifier in the cascade.
For a sub-window x, if it is rejected by the i-th strong
classifier then fi(x) = 0, otherwise fi(x) = 1.
For an offline boosted detector, the main reason of

the performance degradation in a new scene is that
some of the strong classifiers in the cascade have lost
their efficacy. And it is infeasible to retrain a new
detector using the collected online samples, considering
the over-fitting problem caused by insufficient samples.
Besides, we observe that, there are some strong clas-
sifiers in the offline detector that remains effective.
Therefore, we remove several strong classifiers and
retrain several new strong classifiers using collected
online positive and negative samples. In this way,
we preserve the efficient part of the offline boosted
detectors, while also add some new strong classifiers
specifically designed for the new scene.

(a) CAVIAR1 (b) CAVIAR2
Figure 2. Precision-Recall curves and the percent-
ages of samples of different overlap on CAVIAR
dataset.

4 Experiment

We validate our approach on two publicly avail-
able datasets: CAVIAR dataset and Munich airport
dataset. In this section, we will provide implementa-
tion details and show the adaptation performance.

Implementation Details: We train an AdaBoosted
cascade detector of 20 layers [11] as the offline detector.
For aligned sample selection, we first label 3000 bina-
ry pedestrian masks, and learn a dictionary with 30
pedestrian mask words using dictionary learning [10].
The size of each window Wk is 4× 4 in Guided Image
Filtering. The parameter μ is set to 0.8, thresholds
θ1, θ2 and θ3 are 0.5, 0.3 and 0.1 respectively, η is set
to 1. We conduct experiments by varying the number
of synthesized samples between 2000 to 10000, which
show that 5000 is sufficient. So we fix the number of
5000 in the following experiments.

Computation Time Cost: We perform all experi-
ments on a 2.8GHz, Xeon computer. It takes about
tens of milliseconds to synthesize a sample, thus lead-
ing to several minutes to collect thousands of samples.
For adaptation, the overall time is about several hours,
which is much less than the time cost of retraining an
object detector that typically is about 2-4 days [12].

4.1 CAVIAR Dataset

CAVIAR Dataset contains multiple night scenes,
which is rather challenging for a generic detec-
tor due to illumination variations. We use t-
wo scenes, CAVIAR1 and CAVIAR2, and corre-
spondingly select four videos (OneShopOneWait1front,
OneShopOneWait2front, OneShopLeave2Enter and
WalkByShop2front) which are used for experi-
ments. In CAVIAR1, we test our approach on
OneShopLeave2Enter, and compare with two other ap-
proaches. OneShopLeave2Enter contains 1200 frames
of size 384 × 288 and 290 ground-truth (GT) instances.
In CAVIAR2, we test on WalkByShop2front, which has
2360 frames and 1012 ground-truth instances.
We collect 1500 aligned positive samples in

CAVIAR1 and synthesize 5000 positive samples. In
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Figure 3. Precision-Recall curves and the percent-
ages of samples of different overlap on Munich
airport dataset.

CAVIAR2, 310 aligned positive samples are collect-
ed. To show the effectiveness of our aligned sample
selection, we calculate the overlap of samples with the
ground truth, and compare to a baseline method that
uses a tracker and background subtraction. Fig. 2
shows the percentages of samples of different overlap
on CAVIAR1 and CAVIAR2. We can see that samples
collected using our method mostly have 80% overlap
with the ground truth, while the baseline contains
many undesirable samples with overlap less than 50%.

We compare the performance with two state-of-
the-art approaches. One is an incremental learning
approach [6], the other is a random fern approach [7].
We also compare with two baselines: The first uses the
offline detector with no adaptation, and the second
uses only aligned samples for adaptation. The ROC
curves results are shown in Fig. 2. We can see that,
our approach outperforms both methods in [6] and
[7], and has a significant improvement over the offline
detector method. We can also see that the performance
of the baseline using only aligned samples is only better
than the offline detector baseline. It is mainly due
to the inadequate number of online positive samples,
which proves the efficacy of our synthesized samples.

4.2 Munich airport Dataset

This dataset consists of 200 images with a resolution
of 720×480 and 1829 annotated pedestrians. It is a
challenging dataset due to large viewpoint variations,
low contrast, small obstacles and occlusions.

We use the first 100 frames to collect samples, and
the rest 100 frames for test. We collect about 200
aligned online positive samples and synthesize 5000
positive samples. We also evaluate the distribution of
samples of different overlap with ground truth, which
is shown in Fig. 3. We compare our approach with the
offline detector baseline and aligned sample baseline.
The precision-recall curves of different methods are
illustrated in Fig. 3. From the results, we can see that
our approach achieves the best performance. Note that
the improvement is not as significant as in CAVIAR
dataset, this is mainly because that the training video
is too short (only 100 frames), which lead to a large
resemblance in collected online samples, and decreases
the adaptation performance. Even though, there is
still a 5 percent improvement of recall rate over the
offline detector baseline when the precision is 0.9.

Figure 4. Some adaptation results for different
scenes. The first row shows the results by offline
detector, the second row shows the results of our
approach.

5 Conclusion

We present an efficient adaptation approach to
transfer an AdaBoost detector to a new scene. The
key step in our approach is the online sample collection.
We can collect sufficient and qualified online samples
without supervision, including aligned online samples
and synthesized samples. Experiments on two public
datasets demonstrate the power of our approach and
further demonstrate the efficacy of our aligned samples
and synthesized samples.
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