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Abstract 

Color image processing is necessary in various academic fields, but each field approaches it differently, and often in-
correctly.  It should really be done in a way that is meaningful from the physical, psychological, or biological point of 
view. In this paper, I introduce the database SOCS, which is a tool to combine the physical and psychological viewpoints, 
and two recent researches, one on the illumination estimation relating to the physical viewpoint, and the other on the ge-
netic polymorphism relating to the biological viewpoint.

1. Introduction 

‘Color image’ has been processed from a variety of 
viewpoints. The meaning of ‘color image processing’ 
changes from one researcher to another.  As color im-
ages are used mainly for object recognition in machine 
vision research, color is mainly dealt with from the 
physical viewpoint, in which a color image is simply a 
multi-channel image that can be processed as a set of 
three grayscale images.  There, it is not so important 
that the color processed corresponds to the color per-
ceived by a human being.  This approach, including the 
multi-spectral image analysis, can be called the ‘color 
image processing from the physical viewpoint.’ 

However, ‘color’ is a sense that is proper to mankind.  
Though there are many animals that recognize color, the 
color seen by a fish, for example, is not the same as the 
color seen by mankind.  As color influences human 
emotion and preference, there are industrial fields where 
the color sensed by human beings is regarded important.  
In the industries of photography, graphic arts, and illu-
mination, accurate color reproduction is required.  In 
the cosmetics industry, color appearance under various 
illuminations is important. 

For accurate color reproduction, it may be necessary 
to understand the physiological processing of color by 
the human nervous system including the brain.  How-
ever, because it is not yet fully understood, the 
processing by nerves and the brain is studied by psycho-
logical or psychophysical methods.  In human vision, 
three kinds of cones have their proper spectral sensitivi-
ties.  Thus, in an artificial system that concerns human 
color perception, it is necessary that the color sensors 
have spectral sensitivities whose linear combinations 
conform to the sensitivities of the cones (the Luther con-
dition).  The difference in color is perceived as the 
result of a complicated processing of the cone outputs by 
the nervous system.  To simulate this, color difference 
is normally evaluated by the distance in the L*a*b* or 
L*u*v* uniform color space defined by the CIE, or their 
improvements.  These color spaces have been deter-
mined by psychophysical experiments.  Color image 
processing for color reproduction is executed on this 

basis, and its result is subjectively evaluated.  Such an 
approach is the color image processing from the psycho-
logical viewpoint.  This kind of approach is also 
required in machine vision when the purpose of the sys-
tem is related to human perception, such as when it is 
necessary to visually recognize the traffic signs or sig-
nals in the same manner as a human being does. 

Researches from these two viewpoints have long been 
done separately; however, more interdisciplinary re-
searches should be conducted to yield more fruitful 
technologies. 

In addition to the above two, the third ‘biological’ 
viewpoint has become important.  Conventional color 
image processing has been aimed at ‘normal’ trichromat 
vision.  However, ‘barrier-free’ or ‘universal’ design has 
become more important in everyday life.  Certain ge-
netic variety exists in the population that causes 
dichromatic or anomalous trichromatic color perception.  
There also exists a genetic polymorphism within those 
with ‘normal’ trichromatic vision. To better accommo-
date such various human color perception, color image 
processing algorithms simulating dichromats or anoma-
lous trichromats are being developed.  However, there 
are few researches on the color appearance for each ge-
netic type. 

Recently, we obtained a very interesting result on the 
relationship between genetic polymorphism and subjec-
tive color difference.  Color image processing 
technology can contribute to both the analysis of human 
color vision and the development of solutions for the 
genetically caused problems.  This may be called the 
color image processing from the biological viewpoint. 

In this paper, we discuss our research and develop-
ment efforts from these viewpoints. 

2. Color sensor evaluation and SOCS 

Let us first define the spectral vector space.  For 
simplicity, let us define the visible light wavelength to be 
from 380nm to 780nm and discretize it with 5nm interval.  
Then, the light spectral intensity is expressed by an 
81-dimensional vector S.  In the same way, human cone 
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spectral sensitivities sml ,,  are expressed by 
81-dimensional vectors.  The color stimuli, which are 
sensed by the human retina, are expressed by L, M, S as 
Eq.(1). 

sSmSlS SML  , ,   (1) 

This relationship is depicted in Fig.1.  In this figure, 
the 81-dimensional spectral space is simplified to two
dimensions, and the (human) visual three-dimensional 
subspace (visual subspace), which is spanned by sml ,,  
in the 81-dimensional space, is represented by one hori-
zontal dimension.  Then, the light stimuli P and Q are 
shown by two vectors and the color stimuli are obtained 
as vectors Pv and Qv, which are orthographic projections 
to the visual subspace. 

Color images are usually input by the sensors with red, 
green and blue filters, which establish three sensitivities 
to light signal.  To be able to obtain an accurate color 
reproduction, these three sensitivities are required to sat-
isfy the ‘Luther condition’, which says that each of the 
sensitivities must be a linear combination of the human 
cone sensitivities.  This means that, in the vector space, 
the subspace spanned by the sensor sensitivity vectors 
(sensor subspace) should coincide with the visual sub-
space.  The Luther condition can be expressed by 
Eq.(2), where the sensor spectral sensitivities are 
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If the sensors satisfy this condition, any pair of light 
stimuli that look as different colors with eyes can be dis-
criminated using the sensor outputs.  This can be 
mathematically proved [1].  As such, the Neugebauer 
quality factor qe, which directly measures the degree to 
which the Luther condition is satisfied, has been known 
as an index for sensor evaluation [2]. 

However, qe is not necessarily a good measure for the 

sensor evaluation, for we know that color images look 
sufficiently natural if we linearly compensate the input 
signals, R, G and B, as Eq.(3), even when we use a set of 
easily selected red, green, and blue filters whose qe is 
low.  
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In such a case, the sensor subspace does not coincide 
with the visual subspace (Fig.2).  The lights P and Q 
are perceived by the human vision as the orthographic 
projection Pv and Qv to the visual subspace, and the color 
signals obtained by the sensors are the orthographic pro-
jections Ps and Qs to the sensor subspace.  Because the 
Luther condition is not satisfied, the colors are 
metamerically matched differently.  In spite of the fact, 
the reproduced image looks sufficiently natural.  The 
reason is deemed to be as follows. 

Colors we see are mostly those of reflective objects.  
If the spectral intensity of the reflected light is widely 
distributed as shown in Fig.3(a), for example, the lights 
P1 and P2, which look like the same color Pv to the hu-
man vision, would appear in different colors P1s and P2s 
to the sensors.  However, if the spectral intensity is dis-
tributed thinly in the dimensions higher than the 
dominant three dimensions (Fig.3(b)), and if its distribu-
tion is known, we can reconstruct the original P1 and P2 
from P1s and P2s by assuming they are on the principal 
axes inferred from the distribution.  Re-projecting the 
reconstructed vectors to the visual subspace, the ap-
proximate color P’v can be obtained.  This 
reconstruction and re-projection procedure can be ex-
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pressed by the matrix compensation in Eq.(3). 
In such a scenario, the quality of the color reproduc-

tion also depends on the shape of the object color 
distribution. Accordingly, it is necessary to know the 
distribution of objects’ spectral reflectance in order to 
evaluate the quality of the color compensation.  For that 
purpose, we collected spectral reflectance/transmittance 
data that cover almost all that are usually observed.  
Table 1 shows the number of the collected spectral data. 

Though the Pointer gamut [3], which measured the 
color of many objects under the daylight, had been 
known, it was expressed by the tristimulus values, and 
thus the colors under other illuminations could not be 
reproduced.  From the new spectral data, we could ob-
tain accurate color appearance under any illumination 
variation.  The data were published as ISO/TR 16066 
“Standard object colour spectra database for colour 
reproduction evaluation (SOCS)” in 2003, whose de-
velopment was reported in [4].  This technical report 
(TR) was published as one of graphic technology stand-
ards, and is known in the color reproduction industry, but 
may not be well known in other areas.  SOCS is very 
useful in many application areas such as color sensor 
evaluation, color gamut evaluation, illumination light 
source evaluation, and accurate color reproduction. 

Many computer vision papers still deal with color in a 
very primitive manner.  We hope more researchers be-
come more serious about spectral distribution and 
develop a new usage of SOCS. 

Based on SOCS, some research results have been de-
rived as follows: 

Since the spectral transmittance of color slides and 
the spectral reflectance of lithographic prints, which 
constitute the most of print material, can be suffi-
ciently approximated by three principal components, 
the conventional scanners, whose source images are 
mostly from those, do not need to satisfy the Luther 
condition [5].  Figure 4 shows the spectral reflec-
tance/transmittance rms (%) errors between the 
original spectra and those approximated by the cor-
responding number of principal components. 
Spectral reflectance restoration quality after the 
linear compensation is closely related to the sub-
space dimensions that the spectral reflectances span 
[6]. 
The ranking of the sensor-set color reproduction 
quality is mostly stable and not greatly affected by 
object categories [6]. 

These facts had been known from the experience, but 

they were experimentally verified using SOCS.  They 
are true under the daylight.  However, it should be not-
ed that the color appearance under the artificial 
illumination with many spectral peaks, like fluorescent 
lamps or LEDs, often differs from the one under the day-
light.  For example, it is known that fruit color looks as 
if it tastes better under the fluorescent lamps with three 
spectral peaks.  However, the fruit in the image looks 

Table 1  Total number of collected spectral data for SOCS. 

Category No. of sub-
categories 

No. of 
colors

Photographic materials (Transpar-
encies / Reflection prints): 

8 2,304

Graphic printing (Offset / Gravure) 33 30,624

Color computer printers 21 7,856

Paint (for exterior / interior objects)  336

Paints (for art) 4 229

Textiles 6 2,832

Flowers  148

Leaves  92

Human skin  8,570

Krinov data (natural objects)  370

Total  53,361

Fig.4  Approximation error using principal components 

for each category [4]. 
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also good, when we restore the spectral reflectance from 
the image color using the three principal components of 
photographic materials (transparencies) in SOCS (Fig.5) 
and simulate its color.  This means that, for example, 
oranges do not have any pigment that is unique to or-
anges.  Such evaluation has become very important in 
the modern life, where various artificial illumination can 
be designed. 

SOCS, which contains ca. 50,000 spectral data, is very 
useful for many applications.  However, it may not be 
sufficient if it is regarded to contain all spectral 
reflectances/transmittances in the world: though it con-
tains the data for flowers and leaves, it does not contain 
those for animals and fruits; the collection of inkjet 
printer inks is not enough either, since the inkjet tech-
nology has been greatly developed after the SOCS 
project.  Another important category that was not in-
cluded is that of fluorescent materials, which are 
constituents of papers and printer inks.  Though it was 
considered, in the end it was not included in the database 
because the fluorescent materials are unstable and it was 
necessary to develop a new measurement method for the 
purpose.  We hope that the database is continually de-
veloped and contributes to the new image sensing 
technology. 

3. Computational color constancy and 
‘corresponding color reproduction’ 

Color constancy refers to the human visual function 
with which the human being can perceive the object col-
or as almost stable under varying illumination.  
Computational color constancy is the machine vision 
algorithm to imitate this human physiological or psy-
chological function.  At first, it aimed at simultaneously 
computing both the spectral intensity of the illumination 
and the spectral reflectance of the object [7].  However, 
this problem turned out to be computationally unsolvable.  
Even the easier goal of estimating the illumination 
chromaticity from an image has not been achieved, either.  
It is now considered that, just as the human vision uses 
multiple cues to sense the distance from a scene, it uti-
lizes diverse information in addition to the simple 
physical measurement at retina to estimate the object 
color, depending on the scene circumstances. 

In the computational color constancy, many methods 
based on various cues have been proposed.  For in-
stance, we proposed a physics-based algorithm that uses 
the dichromatic reflection model [8].  When we aim at 
utilizing the obtained illumination chromaticity for 
‘Corresponding Color Reproduction,’ which reproduces 
the scene colors that we perceive under different illumi-
nations, another psychological approach should be 
combined. 

It is known that the color of reflection light on a ho-
mogeneous surface of an non-metallic object can be 
modeled as Eq.(4): a linear combination of a diffuse re-
flection (the first term) and a specular reflection (the 
second term) with mixing coefficients  and , where 
(Ro, Go, Bo) is the object color and (Rw, Gw, Bw) is the 
illumination color.  This model is called the “dichro-
matic reflection model [9].” 
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If we consider the RGB three-dimensional space, the 
colors represented by this equation are distributed on a 
plane.  If there are two object surfaces with different 
colors, their colors in a scene are distributed on two 
planes, which cross each other on a line.  The line then 
represents the illumination color.  If we show the rela-
tionship on a chromaticity diagram, a plane is replaced 
by a line, and a crossing point of two lines represents the 
chromaticity of the illumination (Fig.6).  Hence, if there 
are multiple objects with different surface colors, the 
illumination chromaticity can be estimated as the nearest 
point from the multiple lines.  If we express each line as 
Eq.(5), this problem can be formalized as that of mini-
mizing F(x,y) in Eq.(6), where wi is the weight for each 
line. 
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Figure 7(b) shows the chromaticities of plastic objects 
in a scene (Fig.7(a)) measured by a spectroradiometer.  
It can be seen that the chromaticities (white dots) of 
plastic spoons are distributed on lines (each correspond-
ing to the color of a spoon) that cross at a point, which 
corresponds to the chromaticity of the illumination, in 
this case white.  It is known that this relation holds for 
most non-metallic objects [10]. 

In applying this principle to the automatic illumination 
chromaticity estimation, there remain several problems.  

The surface color of an object is not always homo-
geneous. 
Each colored object must be segmented in advance. 

Though the color homogeneity holds in most artifacts, 
it does not hold in natural objects like flowers or leaves.  
Though it is hard to discriminate between artifacts and 
natural objects, we have developed an algorithm for the 
purpose with more than 80% accuracy [11].  The algo-
rithm makes use of the property that most artifacts have 
long linear edges.  This algorithm may be adopted to 
solve this homogeneity problem. 

The segmentation problem will be solved by improv-
ing the ‘color quantization’ technique.  Color 

 
Fig.6. Chromaticity of dichromatically reflected light lies 

on straight lines (arrows) that cross at the chroma-
ticity of the illumination (cross).. 
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quantization is a technique to express a full-color image 
with 8-bit RGB components by, e.g., less than 256 colors, 
by extracting dominant colors in the image.  The tech-
nique was originally developed to save image memory 
[12].  For example, the full-color image in Fig.8(a) can 
be expressed by 33 colors as Fig.8(b), using this tech-
nique.  To use this technique for illumination estimation, 
the number of colors can be reduced further, segmenting 
the image into connected color regions. Then the color 
distribution of each segment can be analyzed.  One 
problem with this technique is that a color gradation due 
to shading can cause an over-division of regions with 
homogeneous colors.  Improving the color quantization 
algorithm is also an important step for this illumination 
estimation. 

Is it then possible to estimate the illumination chroma-
ticity, if the segmentation problem is solved?  Figure 
9(a) is a raw image taken by a single-lens reflex camera 
under the illuminant A.  Figure 9(b) is the result of il-
lumination chromaticity estimation for the image, based 
on the five connected regions, i.e., the red, blue, green, 
yellow, and pink spoons, and a white color standard.  
Segmentation was manually carried out in this case.  
The white lines are the first principal components of the 
chromaticity distributions of the connected regions.  
Weighting the components with the number of the pixels 
in the regions, the point nearest to the lines (the red 

cross) was determined as the illumination chromaticity.  
Though it is estimated near the chromaticity of the 
standard white, the lines are not particularly well fitted to 
the chromaticity distribution.  The distribution for the 
yellow region especially deviates from a line, forming a 
curve instead. Since the raw data were directly obtained 
from the color sensors, not mixed with the outputs from 
other channels, the reason for the curved distribution 
appears to be the non-linear characteristics of the sensor 
response.  If we correctly calibrate the sensor response, 
the chromaticity distribution should fall on straight lines 
which should intersect at the illumination chromaticity.  
Hence, it is expected that correcting the non-linearity 
would simultaneously calibrate the sensors and estimate 
the illumination chromaticity. 

We hypothesized that the non-linearity of the sensors 
is due to the S-shaped compensation, which is often ap-
plied in the photography industry.  To remove the 
compensation, we modelled the S-shape characteristic by 
a hyperbolic function and tried a correction with its in-
verse function, allowing arbitrary shift (Eq.(7)). 
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Where  and  are constants that control the curvature 
of the S-shaped curve, and  and  are those that control 
the shift.  When we put a constraint that the curve pass-
es two points (x, y) = (0, 0) and (1, 1), the curve shape is 
specified by two parameters, e.g.  and . 

Figure 10 shows the result of such an optimization of 

 
(a) A scene with plastic objects. 

 
(b) Chromaticity diagram. 

Fig.7 Chromaticity points of colors sampled from 

 spoons. 

(a) Original full color image with 24 bits/pixel. 

(b) The image expressed with 33 colors. 

Fig.8 Color quantization 
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 and . Now the principal axis lines converge almost at 
a point near the chromaticity of the white standard.  
This effort to correct the response curve is not complete 
yet. Though the result for this camera looks good, the 
estimation accuracy is still not sufficient.  Also, the 
method works worse for other cameras.  More sophis-
ticated optimization algorithm that can correct 
complicated curves may be necessary. 

4. The relationship between color differ-
ence and genetic polymorphism 

As the final topic, we introduce the color image pro-
cessing from the biological viewpoint.  This study is 
considered to be the first to investigate the relationship 
between the difference in perceived color and the genetic 
polymorphism among the normal color vision people. 

Observers with normal color vision are trichromatic, 
and have three types of cones (L, M and S) on the retina.  
They are often treated as though they all have the same 
color perception property.  However, it is known that 
the cone characteristics of normal trichromatic observers 
are not necessarily the same due to genetic polymor-
phism.  This fact was not known when the CIE-1931 

XYZ system was standardized. 
The opsins, the light sensitive pigments, of the L and 

M cones are said to be the result of differentiation from 
one type, and very similar.  One opsin has 364 amino 
acid residues, and 15 of them are different between L and 
M.  Most of the spectral sensitivity difference between 
them is realized by the difference in 180th, 277th, and 
285th amino acid residues [13].  The 180th amino acid 
residue is normally serine for an L opsin and alanine for 
an M opsin.  However, it is often replaced by alanine 
even for an L opsin, and the absorption spectra analysis 
revealed that the spectral sensitivity of the L cone shifts to 
the short wavelength direction by 6nm [14].  We inves-
tigated how the wavelength shift relates to the color 
discrimination, and obtained an interesting result [15]. 

We postulated that, even if the L cone spectral sensi-
tivity is shifted for a normal tri-chromatic observer, the 
neural or information processing that follows in the brain 
remains the same.  Figure 11 (solid curves) shows the L, 
M and S spectral sensitivities l , m  and s , 
which Hunt-Pointer-Estevez proposed, and 'l , which 
was obtained by shifting l  by 6nm to the m  
direction.  We call a person with l , m  and s  
‘a normal observer’, and one with 'l , m  and 
s  ‘a shift observer’. 

Given these cone sensitivities and a light spectral in-

(a) An image taken under an illuminant A simulator. 

(b) Chromaticity distribution of the image. 

Fig.9 Illumination chromaticity estimation using an ex-

isting single-lens reflex camera. 

Fig.10 Illumination chromaticity estimation after sen-
sor response correction. 

Fig. 11 Cone sensitivities (solid lines) with the shifted 
L cone sensitivity 'l , and primary colors’ 
spectral intensity (dotted lines) of Quattron.
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tensity, we can calculate the tristimulus values L, M, and 
S.  From them, CIE-1931 X, Y, and Z values, and CIE 
L*, a*, and b* values can also be calculated.  If we 
have a pair of lights or spectral intensities P1 and P2, we 
can also compute the color difference as the Euclidean 
distance between the two sets of L*, a* and b* values.  
This is the procedure for the normal observer. 

Likewise, we can calculate the color difference for the 
shift observer.  In this case, as the L cone sensitivity is 
shifted, the output is L’ instead of L, but the procedure 
that follows is the same.  The color difference that the 
shift observer perceives should not be the same as the 
one the normal observer perceives.  

To enhance the difference of the color difference, we 
used the four-primary-color display system Quattron by 
SHARP Corporation [16].  The Quattron has the pri-
mary Ye(llow) in addition to the normal primaries R, G, 
and B.  The spectral intensities of the four primaries are 
depicted in Fig.11 with dotted lines. 

The four-primary-color display Quattron can show a 
tri-chromatic observer various metamers of one color.  
However, because the metamers of one color for the 
normal observer are different from those for the shift 
observer, we can enhance the color difference between a 
color pair only for one of them and not for the other.  
Table 2 shows a set of six color pairs used in the experi-
ment.  For example, the first color of the ‘Yellow’ pair  
was (L*, a*, b*)=(71.527, -35.309, 54.502) for the 
standard observer.  The color difference Eab between 
the first and second color was measured several times, 
and the average and the standard deviation was 0.742 
and 0.045, respectively.  However, the first color was 
(L*, a*, b*)=(71.547, -33.640, 54.537) for the shift ob-
server.  The average and the standard deviation of the 
color difference was 0.372 and 0.033, respectively.  We 
used color pairs whose color difference is in the a* di-
rection, since the metamers generated by the Quattron 

for an observer have color differences in that direction 
for another observer. 

In the subjective evaluation experiment, these color 
pairs were shown at upper and lower sides with separat-
ing horizontal black line on the Quattron display.  The 
subjects (10 males with normal color vision) were asked 
which half looked redder.  The pattern with the same 
pair with the inversed position was also prepared.  The 
observation was repeated three times for verification. 

The DNA sequences coding the amino acid residues of 
both L and M opsins of the subjects were determined 
with the nested PCR and the sequence analyzer.  Ge-
nomic DNAs were prepared from saliva.  The 180th, 
277th, and 285th amino acid residues for each subject 
were determined.  Table 3 shows the result of the above 
subjective evaluation experiment and the genetic analysis.  
The upper six rows show whether the subject could dis-
criminate the color difference of each color pair.  ‘Yes’ 
means that the subject could do it, and ‘No’ means that 
he could not.  The next row shows the number of color 
pairs that the subject could discriminate.  The 180th 
(the most important) amino acid residue of L opsin of the 
subject is shown.  ‘Ser’ means serine, and ‘Ala’ means 
alanine.  For example, the first subject could discrimi-
nate the color difference of four color pairs (Gray, Sky 
Blue 1, Yellow and Yellow Green), and his 180th amino 
acid residue of the L cone was alanine. 

The experimental result was very interesting.  Figure 
12 shows the relationship between the number of sub-
jects and the number of discriminable color pairs 
(NDCP).  The subjects are classified with color accord-
ing to the 180th amino acid residue of the L opsin.  
Except for one subject, the subjects who have alanine at 
that position discriminated more color pairs than those 
with serine.  However, as we showed in Table 2, all 
color pairs were designed to have larger color difference 
for standard observers, who have serine at that position. 

Table 2. The mean of measured L*, a* and b* values of the first color of the color pairs, and the mean and the standard 
deviation of the measured color difference Eab between the first and second colors in the color pairs. 

  Gray Sky
Blue 1

Yellow Yellow 
Green

Skin Sky
Blue 2

L*(Std) Mean 75.259 76.825 71.527 77.512 74.351 76.752

a*(Std) Mean 1.842 9.057 35.309 49.868 13.416 9.186

b*(Std) Mean 10.762 24.881 54.502 62.889 37.819 24.993
Eab(Std) Mean 1.042 1.066 0.742 1.079 0.260 0.418

Std Dev 0.036 0.040 0.045 0.041 0.019 0.034

L*(Shft) Mean 75.365 77.041 71.547 77.648 74.207 76.965
a*(Shft) Mean 3.608 12.294 33.640 44.898 15.766 12.365

b*(Shft) Mean 10.578 24.509 54.537 63.124 37.590 24.626

Eab (Shft) Mean 0.697 0.647 0.372 0.629 0.255 0.412
Std Dev 0.030 0.031 0.033 0.029 0.015 0.031

 

Table 3 The result of the observation experiment and the DNA analysis.

Subject No. 1 2 3 4 6 7 9 10 11 12

Gray Yes Yes Yes Yes Yes Yes Yes Yes No Yes
Sky Blue 1 Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Yellow  Yes Yes No Yes No Yes Yes No No No

Yellow Green Yes No No Yes No Yes Yes No No No
Skin No No No No No No No No No No

Sky Blue 2 No No No No No No No No No No

Number of Discriminable  
Color Pairs (NDCP)

4 3 2 4 2 4 4 1 1 2

L cone opsin 180th amino acid 
 residue 

Ala Ala Ser Ala Ser Ser Ala Ser Ser Ser
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We postulated that, even if the L cone spectral sensi-
tivity on the retina is shifted, the neural or information 
processing that follows in the brain remains the same.  
The result of this experiment seems to show that the 
postulate was wrong.  If the information processing is 
the same, the alanine at the 180th position should be a 
disadvantage for color discrimination.  The result 
probably means that the individuals who were born with 
alanine at that position have grown up to have such in-
formation processing means that they discriminate colors 
better than those born with serine. 

This experimental study is the first to investigate the 
relationship between color difference perception and 
genetic polymorphism.  Since the experimental result 
was very interesting, more study should follow in many 
aspects.  The number of subjects should be increased.  
The color difference evaluation in more directions than 
only in the a* direction should be carried out.  As the 
usable color difference direction was restricted by the 
characteristics of the Quattron, more sophisticated appa-
ratus should be employed. 

Only male subjects were used since the genes for L 
and M opsins are both on the X chromosome and the 
genetic analysis for females with their two X chromo-
somes is complicated. However, the experimental result 
was very interesting from the developmental viewpoint.  
It may be useful to deepen such studies for solving the 
problems in human vision, e.g., how the vision system 
grows up or how the color appearance in females is dif-
ferent from that of males, etc. 

It is hoped that the understanding in color perception 
will be deepened by the collaboration of the image pro-
cessing researchers with the biologists or biochemists. 

5. Conclusions 

Color images are often regarded only as a set of three 
gray images in the machine vision research community.  
Many research papers process RGB images without 
paying attention to the specification of the used RGB 
system.  Such easy approaches may be allowable in 
some applications, but not in others.  In applications 
that should be closely combined with the human vision, 
the viewpoints of biology and psychology should be 
taken into account. 

In this paper, we introduced our researches from sev-
eral viewpoints: the development of the basic database 
SOCS as well as a few unsolved problems.  We expect 
the color image processing to be studied by many re-
searchers in more serious manner, fusing various 
viewpoints. 
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Fig. 12 The relation between NDCP and the 180th  

amino acid residue of the L cone opsin 
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