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Abstract

Calibrating the response function of a line scanner is
very important in many fields of computer vision. We
propose a method to reduce nonequivalence present in
response functions of pixels. Contrary to current state-
of-the-art methods our method uses a linear light source
which is usually attached to line scanners for pixel-wise
calibration. We define a radiant intensity function for
a linear light source and fit it to captured images to cal-
ibrate the response function. We applied our method to
a line sensing camera to remove streaking noise when
scanning and experimental results showed a significant
reduction of noise in the system.

1 Introduction

Line scanners, which consists of a 1D line camera
and a linear light source, are widely used in many
computer vision applications that are sensitive toward
pixel values, such as in factory automation systems.
Many advanced methods for such applications rely on
the assumption that the response function of a cam-
era is relatively equivalent among pixels, but this as-
sumption is not true: there are some nonequivalence
present among pixels. This nonequivalence can inter-
fere with some processes and thus needs to be fixed. In
this paper we propose a method to reduce nonequiv-
alence present in a 1D line camera by calibrating a
response function for each individual pixel. Although
current state-of-the-art methods can calibrate the re-
sponse functions of cameras, they do not use a linear
light source but only use point light sources or uni-
form light sources for radiometric calibration, so they
are not suitable for use with line scanners. We define
a Radiant Intensity Function (RID) for a linear light
source and use it for calibration. Another contribution
of our method is that our method calibrates a response
function for each individual pixel. Most of the exist-
ing methods calibrate the camera on an image-average
or patch-average level but can not calibrate on a pixel-
wise level. Our pixel-wise calibration has an advantage
that it provides better noise removal with calibration
of the camera.
This paper discusses related research in section 2.

We describe our method in section 3. A description
of our equipment and its configuration is in section 4.
Section 5 describes the calibration of the line sensor.
We show experimental results in section 6 and provide
a discussion in section 7.

2 Related Work

There are many methods that calibrate an image
sensor in order to reduce noise[1][2][3][4][5][6][7][8].
Many of these methods rely on calibrating the sensor
using one correction function for the entire sensor[1].

These methods yield valid image-average calibrations.
Properties of Charge Coupled Device (CCD) image
sensors are well defined from the perspective of ma-
chine vision by analysing the statistical properties of
the noise that is produced by each step of the digi-
tization process[1]. More recently advances with the
statistical modelling and simplification of the response
function defined in [1] produced a model that takes
into consideration non linear effects[2].
A majority of current state-of-the-art methods rely

on calibrating a CCD sensor by using image patches
and calibrating according to each patch by using
filters[3][4][7][8]. These methods produce accurate
image-average or patch-average calibrations but lacks
the ability to produce accurate pixel-wise calibration.
Our method produces camera calibration functions for
each pixel seperately. Existing methods use point light
sources or uniform light sources for radiometric cali-
bration. However, line scanners are usually equipped
with linear light sources, so existing methods are not
applicable for calibrating line scanners.
There are some research into determining calibration

for each pixel in space applications which rely on a sta-
tistical model of each step in the acquisition phase[5].
Our method does not require extensive knowledge of
the camera hardware by not analysing the camera re-
sponse function statistiaclly. This results in easier
computation of the camera response function and can
be applied to many situations where enough informa-
tion to analyse the camera is not available.

3 Camera Response Function

The typical response model used by state-of-the-art
methods as defined in[1] is given in equation 1.

D = (I +NDC +NS +NR)×A+NQ (1)

This defines the digital value of the pixel (D), which
is equal to the number of collected photons (I), the
number of dark electrons due to dark current (NDC),
the zero mean Poisson shot noise with variance depend-
ing on I and NDC , the amplifier generated zero mean
read noise (NR) and the overall system gain (A). This
voltage signal is then quantified and as a result quan-
tification noise, (NQ), affects the final digitized form.
Our method replaces the gain A with a non-linear func-
tion and seperates equation 1 into an equation that has
the components that are dependent on the amount of
light received, FD, and another that has zero mean
stochastic components, FS .

D = FD(I) + FS

FD(I) = A(I + E[NDC ]) +NQ

FS = A(S[NDC ] +NS +NR)

(2)

The light dependent equation FD consists of the
amount of photons received, the expected value of
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the dark current noise and the quantification noise.
The zero mean stochastic equation FS consists of the
stochastic component of the dark current, the shot
noise and the read noise. We do not analyse the
stochastic component of the response function. Our
method regards the intensity dependent function, FD

as one unknown equation that can be solved numeri-
cally. To solve an unknown function the Taylor series
expansion is considered. The Taylor series expansion
of the function FD is defined in equation 3.

FD(I) =
∞∑

n=0

F
(n)
D (a)

n!
(I − a)n (3)

Each pixel is considered to be the origin of its own
response function that is dependent on the received
intensity, I. Because of real world limitations an in-
finite sum of an unknown function cannot be calcu-
lated. Thus we approximate the original function as a
Maclaurin series polynomial with order m that is ex-
panded in equation 5.

FD(I) ≈
m∑

n=0

F
(n)
D (0)

n!
(I)n (4)

FD(I) ≈ C0 + C1I + C2I
2 + C3I

3 + ...+ CmIm (5)

Coefficients C0, . . . , Cm are real valued and unique
for each pixel, thus the function FD is dependent on I
and the pixel x,FD(I, x) ≈ ∑m

n=0 Cn(x)I
n.

I is the light intensity that is received at each pixel.
All intensities are normalized to a value from 0 to 1.
Note that our calibration reduces the nonequivalence
of the response function, but does not calibrate the
absolute strength of the response function.
To configure the Maclaurin polynomial coefficients

we capture several images with different intensities.
Using a known light source and a known reflection sur-
face, the expected light entering the image sensor is
calculable and can be used as a known intensity value.
The response function’s coefficients are fitted to the
captured image to produce the expected signal. This
yields the response function present at each pixel.

4 System Configuration

The system configuration of our method is shown in
figure 1. A 1D line sensing camera is connected to a
telecentric lens and a light source with a known RID
is rigidly attached. The camera assembly is mounted
perpendicular to a flat recording surface and can be
adjusted, closer and further away. To capture a sam-
ple the camera assembly scans the recording surface.
During scanning the camera assembly always remains
perpendicular to, and at a constant distance from, the
recording surface. For our calibration method we scan
a card which has Lambertian reflective properties. An
example of a scanned image is shown in figure 2.
The sample shows the camera resolution on the hor-

izontal axis. The vertical axis is the direction that the
camera assembly scanned the recording surface. Figure
2 shows one scan at one intensity level. Our method re-
lies on having more than one scan at different intensity
levels. Multiple scans are performed with the camera
assembly adjusted to different heights to produce dif-
ferent intensities. To remove the zero mean stochastic

Figure 1. Diagram of system configuration.

Figure 2. Sample of captured data.

components from the scans, we take the average of each
scan in the vertical direction of the image. Different
intensities’ averages are plotted in figure 3.

Figure 3. Average plots of multiple scans.

In figure 3 the horizontal axis is the camera reso-
lution and the vertical axis is the normalized value
of each pixel. Visual inspection clearly shows the
nonequivalence present in the original image. This
nonequivalence in the response of the camera must be
removed or reduced. Visual inspection of figure 2 also
reveals streaking in the image in the direction of the
scan. Generally this is neglectable, but in intensity
sensitive applications it causes problems.

5 Calibration of Line Sensor

To calibrate a line sensor we need to determine the
function FD(I, x) from equation 2. The stochastic
component FS has a zero mean that reduces to zero
when we take the average of a scan. To calculate the
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Maclaurin expansion coefficients of FD(I, x) the light
intensity I(x) must first be determined.

5.1 I(x) estimation

The light intensity function, I(x), at pixel x is cal-
culated from the RID function of the light source and
the angle of the incident light, φ. Our method uses
a linear light source whose RID function is given by
RID(θ), where θ is the angular displacement from the
front of the light. A linear light source is the most
practical and most commonly used in scanning appli-
cations. For calibration purposes it is reasonable to as-
sume that other features of light sources such as strob-
ing or stripe sources are disabled. This light source is
not parallel to the line image sensor, as is shown in
figure 4, thus the intensity of the incident light on the
recording surface varies along the recording line.

Figure 4. Linear light source and recording sur-
face illustration.

Additionally the angle of the incident light, φ(x),
varies according to:

φ(x) = tan−1 d0 + x sinψ

h
(6)

The height between the recording surface and the
light source is h, the horizontal distance between the
recording point and the light source is d0 and the angle
between the recording line and the linear light source
is ψ. Our method uses a Lambertian surface as the
recording surface, thus the light intensity observed at
pixel x is given by equation 7.

I(x) = RID(φ(x)− θ0) cos(φ(x))ρ (7)

The reflectance coefficient of the recording surface
is ρ and the angle between the front of the light and
the recording line is θ0. If the angle of |ψ| is small and
a light with a peaky RID function, such as an LED,
is used, the variation of cos(φ(x)) will be significantly
smaller than that of the RID. Thus I(x) can be ap-
proximated as:

I(x) ∝ RID(φ(x)− θ0) (8)

To calculate I(x) an RID function is fitted to each
set of averaged images. The linear light source that we
use has an RID function that is described by an expo-
nential curve exp(−θ2/w2). The parameters that need
to be estimated are θ0 and the width of the curve w.
To fit the RID function, we use a 1st order Maclaurin
expansion of FD(I, x) and reformulate it as:

FD(I, x) ≈ C0(x) + C1(x)I(x)

= C0 + C1I(x) + ε(x)

D(x) = C0 + C1I(x) + ε(x) +NQ

(9)

Where ε is a zero mean residual. From an averaged
image D(x), we acquire I(x), C0, C1 by minimizing:

min
I(x),C0,C1

∑

x

∣∣D(x)− C0 − C1I(x)
∣∣2 (10)

5.2 FD(I) estimation

From the discussion in section 3, the pixel intensities
of the averaged images D(x) are modelled for an mth

order Maclaurin expansion by:

D(x) =
m∑

n=0

Cn(x)Ia(x)
n (11)

Knowing the value of an observed pixel x, D(x), af-
ter removing the zero mean stochastic components,
and with an estimated light intensity, I(x), the
Maclaurin polynomial coefficients of the camera re-
sponse function can be calculated. To illustrate our
method, in figure 3 we intersect the averages of dif-
ferent intensities at an arbitrary point, in this case at
x = 2000. We plot the input image points D(x) along
with the fitted RID intensity values I(x) in figure 5.
Our method uses polynomial regression to establish
an optimal fitting of the Maclaurin expansion that re-
lates D(x) to I(x). In figure 5 we use a second order
Maclaurin expansion for fitting.

Figure 5. One pixel calibration function example.

In order to calculate the true intensity I(x) from a
given imageD(x), equation 11 needs to be inverted. To
simplify this inversion we use polynomial regression to
calculate the inverted equation’s Maclaurin expansion
coefficients, Q(x). For s samples with different inten-
sity levels, the polynomial regression equation for the
mth order Maclaurin approximation of the inverted re-
sponse function is given in equation 12. Each pixel has
a Maclaurin polynomial expansion with order m that
represents the inverted non-stochastic camera response
function.

min
Q(x)

s∑

a=1

∣∣∣∣∣Ia(x)−
m∑

n=0

Qn(x)Da(x)
n

∣∣∣∣∣

2

(12)
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6 Experimental Results

To evaluate our method we applied it to real world
data. Six samples were scanned at different distances
from the recording surface to use for calibration. We
calculated the average of each sample and applied our
method to calculate the second order Maclaurin expan-
sion of the camera response function. Samples that
were not used for calibration, at arbitrary distances
from the recording surface, were then calibrated by
the calculated coefficients. Figure 6 shows a calibrated
output image at the top and the uncalibrated input
image at the bottom.

Figure 6. Calibrated output and original input.

Visual inspection shows the calibrated image only
has stochastic noise remaining with the streaking noise
removed. The average of the uncalibrated sample and
the average of the calibrated sample in figure 7 shows
that the noise was succesfully removed. The zoomed
insert shows the improvement of the smoothness of the
output.

Figure 7. Averages of output and input.

To analyse the performance of our method we evalu-
ate the smoothness of the original and calibrated out-
put. For evaluation we use a sample that was not used
for calibration and apply our response function to ob-
tain an output image. We fit the linear light source
RID function to the input sample, as described in sec-
tion 5, and use the fitted RID as the ground truth. The
equations for evaluationg the smoothness of the aver-
age of the original image Si, the average of the output
image So and the fitted RID function Se is given as:

Se =
∑

x

∣∣∣∣
∂RID(x)

∂x

∣∣∣∣

Si =
∑

x

∣∣∣∣
∂D(x)

∂x

∣∣∣∣ , Di =
∑

x

|D(x)−RID(x)|

So =
∑

x

∣∣∣∣
∂I(x)

∂x

∣∣∣∣ , Do =
∑

x

|I(x)−RID(x)|
The ground truth is smooth along x, so an ideal

output image will also be smooth. We also evaluate
the difference between: the RID function and the av-
eraged original input Di, and of the output image Do.
For different orders of the Maclaurin expansion we ob-
tain different results for our evaluation, given in table
1. Comparing Si and So, Di and Do, our method sig-
nificantly reduces the nonequivalence of the response
function.

Table 1. Smoothness Evaluation

m = 1 m = 2 m = 3 m = 4 m = 5
So 7.28 7.97 8.09 8.46 8.09
Do 14.54 10.49 7.18 7.54 6.99
Se = 1.02 Si = 66.11 Di = 53.68

The smoothness does not change significantly when
a Maclaurin expansion with m > 3 is selected, but
processing time increases exponentially. Thus for our
experiments we use a value of m = 3 or for cases that
require faster results a value of m = 2.

7 Conclusion

In this paper we have proposed a novel method to
calibrate the camera response function of line scanners.
Our method produced a camera response function that
sucessfully removed nonequivalence present in the sys-
tem. Our method can be applied to 1D sensors and
also to 2D sensors. A 2D sensor will require signifi-
cantly more processing power because of the increased
amount of pixels present in the system.
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