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Abstract

The inspection of bulk materials in mining, recycling
and food-safety places strong requirements on the speed,
accuracy and flexibility of automated visual inspection
systems. State of the art methods utilize complex fea-
ture descriptors and off-the-shelve machine learning
techniques. These methods achieve highly accurate re-
sults, but typically suffer in execution speed. Commer-
cial systems, on the other hand, use simple features
and classifiers to achieve great processing speed, but
pay by a complicated intialization procedure and subop-
timal classification accuracy. In this paper, we propose
to bridge the gap between the two extremes by learning
high level object representations that can be used with
simple classifiers. For that, we adapt the well known
bag of visual words method to use dense sampling and
primitive features. The resulting descriptors are very
fast to compute and invariant to scale and rotation.
At the same time, the method is virtually parameter-
free. This allows non-experts to initializate and operate
sorting systems based on this approach. We evaluate
our method on three food inspection applications. In
all experiments we achieve highly accurate, sometimes
nearly perfect classification. Comparison to a state of
the art method shows that our approach is superior,
beating it by a large margin.

1 Introduction

Over the last decades, more and more visual inspec-
tion tasks are performed not by human workers, but by
automated systems. Aside from being faster and often
cheaper than humans, their main advantage is that
machines deliver consistent performance independent
of external influences – machines do not fatigue. Fur-
thermore, the ever-increasing throughput allows appli-
cations that were previously economically infeasible,
such as the thorough inspection of bulk materials in
mining, recycling and food-safety. The latter is espe-
cially demanding. A large variety of different classes
(e.g. foreign matter, infested, injured or broken fruits
and crops, degrees of ripeness) have to be reliably de-
tected. At the same time, the appearance of the prod-
uct can vary significantly from instance to instance and
sometimes even change over time.
Unsurprisingly, this topic has sparked a lot of in-

terest in the research community. State of the art
methods extract features describing color, texture and
shape – e.g. color moments, hue histograms, Gabor-
jets, perimeter and convexity – and feed those into off-
the-shelve classification algorithms like support vector
machines (SVMs) and ensembles of decision trees. As a
review of these approaches is out of the scope of this pa-

per, interested readers are referred to the encompassing
surveys by Malamas et al. and Du and Sun [6, 4].
While these methods show impressive results, they

are rarely found in commercially available systems. In-
stead, these systems often rely on simple features (e.g.
mean color) and rule-based classification [2]. Rules
correspond to thresholds on the features and multiple
rules are combined using boolean operations. Neither
thresholds nor structure of the classifier are automat-
ically learned from a sample, but manually entered in
a lengthy procedure of trial and error.
This design is due to two main considerations.

Firstly, high demands on the throughput of the sys-
tem make processing time a major constraint, which
prohibits calculation of expensive descriptors and com-
plex classifiers. Secondly, the black-box nature of the
state of the art methods prevents interpretation and
more importantly recalibration by the machine’s oper-
ators [2]. On the other hand, the main drawback of
rule-based approaches is that even though the opera-
tors are able to modify the classification parameters,
the initial set-up has to be performed by an expert.
Configurations with too many directives become un-
manageable as the effect of removing, adding or chang-
ing the order of rules becomes hard to predict. Even
changing a single threshold can have unexpected conse-
quences and significantly decrease classification perfor-
mance. Conversely, too few rules results in very simple
decision regions that may not accurately describe the
underlying class-dependent distribution.

1.1 Related Work

Middle-ground solutions bridging between academia
and industry approaches define complex decision re-
gions in the feature space, but still allow non-experts
to set up the system. This is usually achieved by lifting
low level features to an intermediate, high level repre-
sentation. Duffy et al. detect burn marks on air-filters
by collecting color-histograms of intact and defective
samples [5]. They then derive a histogram that char-
acterizes the color of burn marks and compute a back-
projection table that maps each color to the estimated
probability that the corresponding pixel shows a de-
fect. Defects in query images are located by applying
the back-projection and thresholding the result with
a user-defined parameter. In a follow-up publication,
Bergasa, Duffy et al. extend the method and model the
joint RG-distribution of defects by mixture of Gaus-
sians [1]. Zhang et al. pursue a similar approach for
grading the quality of dates [12]. They build a training
set by sorting 40 date samples into one of four classes
representing different grades of ripeness and collect a
joint histogram of the red and green color channels for
each of the classes. The histograms are then fused into
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a back-projection table, where missing entries are filled
in by linear interpolation using the neighboring values.
Finally, the ripeness of a fruit is assessed according
to color-statistics of the back-projected query-image.
Richter and Beyerer also use a back-projection table
to classify wine berries [11]. First they collect RGB-
histograms of all the materials that are expect to be
encountered while running the system. The histograms
are post-processed and fused into color-classes. These
color-classes are further post-processed and then again
fused to build an attribute mapping, which maps each
color to a discrete, semantically meaningful attribute.
Objects are classified according to the frequency of oc-
currence of each attribute.
While all these approaches show good results with

their respective products, broad application in an in-
dustrial setting is questionable. The approaches pre-
sented by Duffy et al. leave the question how to handle
multiple defect classes. The back-projection method
by Zhang et al. seems simple and intuitive at first, but
their method of building the look-up table is strictly
tailored to grading the ripeness of dates and may not
translate well to other inspection tasks. Richter and
Beyerer’s method depends on many tunable parame-
ters that have unpredictable effects on the classification
performance. Furthermore, their method uses only
color features, which is unsuitable to classify highly
textured objects.

1.2 Contributions

We tackle the task of deriving high level descriptors
by utilizing the bag of visual words framework, which
has been shown to work well in many different applica-
tion domains. We cater to the specific needs of auto-
mated visual inspection by proposing to diverge from
the usual approach in two aspects: primitive instead of
complex features that are sampled in a dense instead
of sparse manner. The resulting object descriptors are
compact, invariant to size and rotation and very fast
to compute. At the same time, the method is virtually
parameter-free, which allows system initialization and
subsequent operation by non-experts. We show the ef-
fectiveness of our approach on three real-world sorting
problems in the realm of food inspection and explore
the impact of the varying aspects of the method.

2 Methods

Our method draws from the well known and well
understood bag of visual words framework. In this
section, we briefly review the foundations of this ap-
proach and then shift our attention to the application
in a visual inspection task.

2.1 Bag of Visual Words

The bag of visual words (BOV) model was originally
introduced by Csurka et al. to address the problem of
image categorization [3]. The key idea is to consider
an image to be composed of visual words, where some
of the words describe the general content of the im-
age, while the rest are specific to the particular image.
Therefore, when one knows a vocabulary of generic
“key-words”, images can be categorized by tracking
which words it contains. This is formalized as follows:

Vocabulary. Given a set of N images (Ii)Ni=1, a

number of low level local feature vectors (xti)
Ti

t=1 are
extracted. Here, Ti is the number of features that can
be extracted from image Ii and xti ∈ R

D are some D-
dimensional feature vectors. After obtaining features
from all images, cluster analysis is performed to obtain
a list of K cluster centers (μk)

K
k=1, where each μk rep-

resents a visual word in the vocabulary. We, as many
others, apply the Lloyd-algorithm to obtain a K-means
clustering.

Descriptors. To derive a global descriptor for an
unseen image I, the first step is to extract T feature
vectors xt ∈ R

D from I. Using the visual vocabulary
learned in the previous step, the descriptor is built by
collecting count statistic of the xt: the K-dimensional

descriptor m = (m1, . . . ,mK)
�
is built by hard assign-

ment to the nearest cluster center,

mk =
1

T

T∑

t=1

1
[
argmin

μ
‖xt − μ‖ = μk

]
. (1)

Fisher Vectors. Fisher Vectors (FV) were intro-
duced by Perronnin et al. as extension to the BOV
model and can be understood as alternative encoding
method [9]. While eq. (1) is a simple frequency statis-
tic, FVs represent a higher order statistic of means and
variances of the feature distribution. The main idea is
to assume that the low level features are generated by
a Gaussian mixture model (GMM),

p(x|λ) =
K∑

k=1

ωkg(x|μk,Σk),
K∑

k=1

ωk = 1, (2)

where g(x|μ,Σ) is a Gaussian with mean μ and diago-
nal covariance matrix Σ. The parameters of the GMM
are obtained by expectation maximization on the xti.
The (2KD)-dimensional descriptor of an unknown

image is encoded as m = (u�
1 , . . . ,u

�
K ,v�

1 , . . . ,v
�
K)

�
,

where dtk = xt − μk and

γkt =
ωk g(xt|μk,Σk)∑K
j=1 ωj g(xt|μj ,Σj)

, (3)

uk =
1

N
√
ωk

T∑

t=1

γkt Σ
− 1

2

k dtk, and (4)

vk =
1

N
√
2ωk

T∑

t=1

γkt
[
d�
tkΣ

−1
k dtk − 1

]
. (5)

In a later publication, Perronnin et al. proposed sev-
eral post-processing methods to achieve better clas-
sification performance [10]. In particular, they rec-
ommend to normalize the features by component-wise
power normalization, m′

j = sign(mj) |mj |α, followed
by L2 normalization, m′′ = m′/‖m′‖2. The reasoning
is that the former “de-sparsifies” the feature vector,
thereby making it more suitable for classification with
SVMs, while the latter removes information that is not
specific to the image I [10].

Classification. Finally, images are categorized by
training a classifier on the global descriptors. Csurka
et al. investigated both Naive Bayes and Kernel-SVMs.
They conclude that the SVM approach is superior [3].
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Following this analysis, we also employ SVMs, albeit
with a linear kernel, as linear SVMs can be efficiently
evaluated using a single dot-product.

2.2 Application in Visual Inspection

The setting and requirements of automated visual
inspection are quite different from other computer-
vision tasks such as object categorization. First and
foremost, the processing time is quite limited – often
only a few hundred milliseconds are available to cap-
ture, process and analyze an image. The system should
be easy to set up and recalibrated when a new product
is introduced or the sorting requirements change. At
the same time users expect near perfect classification
rates, as misclassification have a direct and measur-
able impact on the users’ finances. The environmental
conditions on the other hand, are under tight control.
The background is typically chosen to allow easy ob-
ject detection and segmentation. The lighting, a major
nuisance factor in most computer vision applications,
becomes a design parameter and can be chosen to high-
light discriminative features. This suggests to diverge
from the traditional BOV method in two ways: Dense
sampling and usage of primitive feature descriptors.

Dense Sampling. In traditional BOV approaches,
local descriptors are extracted at key-points found by
an interest point detector. However, in our case the ob-
jects are typically very small (20 to 100 pixels) and con-
tain only few interest points. Therefore, we consider
each foreground pixel (u, v) a “key-point” and extract
a dense set of descriptors. This has the additional ben-
efit of skipping interest point detection (thereby saving
processing time), but is feasible only if the descriptors
themselves are inexpensive to compute.

Color Features. As the color of an object seems
to be the most useful feature for the classification of
natural products [4], we choose our most basic local
descriptor to be the color of a pixel, xt = I(ut, vt).
Since both K-means and GMM rely on measuring dis-
tances between two features, the color space in which
the clustering is performed can have quite a significant
impact on the final object descriptor. In this paper,
we converted all images in the Lab color-space prior
to extracting the features and learning the vocabulary.
An interesting aspect of this feature is that the visual
words can be interpreted as color-names. Therefore an
object descriptor corresponds to a description a human
might give, e.g. “the berry is light green with a little
white and hints of dark blue”.

Additional Channels. The BOV formulation nat-
urally enables inclusion of other feature types. Lo-
cal descriptors with D channels are constructed as

xt = (x1t, . . . , xDt)
�
, where x1t to x3t are the color

components and the remaining xdt correspond to ad-
dition feature types. In this work, we focus on de-
scriptors that encode texture: (a) the raw gray image,
(b) gradient magnitude values at different scales, and
(c) rotation invariant uniform local binary patterns [8].
These texture features have in common that they re-
quire little computational overhead. Other channels
to encode the shape of an object (e.g. using the dis-
tance transform) are also possible. However, in our
experiments we found that these provide no additional
discriminative information.

Table 1: Best results for all experiments with 10 vi-
sual words when all features are considered (mean and
standard deviation from 10-fold cross-validation).

# Enc. F1 score MCC

A-1 FV 0.91 (s = 0.013) 0.89 (s = 0.016)
A-2 FV 0.99 (s = 0.007) 0.98 (s = 0.012)
A-3 FV 0.89 (s = 0.020) 0.86 (s = 0.024)
B FV 0.96 (s = 0.016) 0.92 (s = 0.030)
C-1 FV 0.84 (s = 0.016) 0.72 (s = 0.026)
C-2 FV 0.97 (s = 0.004) 0.88 (s = 0.020)
C-3 FV 0.99 (s = 0.001) 0.98 (s = 0.005)

3 Experiments

To evaluate our approach, we considered different
applications in the realm of food inspection. (A) Dis-
crimination of healthy wine berries from grapes with
fungal infection. This dataset is the same that was
used in [11] and includes three varieties of wine berries:
Riesling, Pinot Blanc and Pinot Noir. We label these
experiments A-1, A-2 and A-3 respectively. (B) Grad-
ing of sugar content in wine berries of the Gewurz-
traminer variety as either “high” or “low”. Here the
blue color channel was replaced with a near infrared
channel. (C) Discrimination of intact wheat kernels
against infected kernels (C-1), foreign cultures (C-2),
as well as small stones, shrivelled grains and other im-
purities (C-3). To be comparable to [11], we report
Matthews Correlation Coefficient (MCC, see e.g. [7]
for a definition) alongside the F1 scores.

3.1 Implementation Details

In all experiments we performed stratified 5-fold
cross validation, where one half of the training set to
learn the vocabulary and the other half was used to
train the classifier. We computed gradient magnitude
channels by filtering with a Gaussian kernel with four
scales, σ = 0.5, 1, 1.5, 2. This resulted in a low-level
feature dimension of D = 9 when all channels were
used and D = 3 when only the color feature was con-
sidered. We learned class-dependent vocabularies by
clustering two times using only positive or negative
samples and collecting the resulting visual words in a
joint vocabulary. The low-level features were decor-
related before the cluster-analysis. The linear SVM
parameter C was determined using grid search, where
C = 2λ was varied with λ = −5, . . . , 5.

3.2 Results

Table 1 shows the best results in all experiments
when all feature channels were considered and the vo-
cabulary contained 10 visual words (5 for each class).
In all experiments very high classification rates were
recorded. In experiments A-2 and C-3 nearly flawless
classification was achieved. Our approach also out-
performs the method by Richter and Beyerer, who re-
ported MCCs of 0.86 in experiments A-1 and A-2 and
0.70 in experiment A-3 [11]. Here we achieve MCCs of
0.89, 0.98 and 0.86 respectively. Furthermore, our re-
sults are very consistent (s < 0.03), whereas the results
in [11] are much more unstable (s > 0.1).
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Table 2: Best results for experiments A-1 to B with
10 visual words when only color features are consid-
ered (mean and standard deviation from 10-fold cross-
validation).

# Enc. F1 score MCC

A-1 FV 0.90 (s = 0.022) 0.88 (s = 0.027)
A-2 FV 0.95 (s = 0.007) 0.92 (s = 0.012)
A-3 FV 0.81 (s = 0.006) 0.76 (s = 0.009)
B FV 0.94 (s = 0.023) 0.88 (s = 0.048)

In all experiments the FV encoding outperformed
the histogram encoding scheme. For example, in ex-
periment A-1 an F1-score of 0.88 and and MCC of 0.86
was achieved when the histogram encoding was used
(all other parameters equal).

Processing Time. As mentioned in Sec. 2, pro-
cessing time is a major constraint in automated visual
inspection. In our experiments, prediction took less
than 65ms per sample with either encoding on a 2,4
GHz Intel i7 CPU. We expect that even faster pro-
cessing times can be achieved by optimizing the code
and offloading some computations to hardware.

Feature Channels. To investigate the influence of
the texture feature channels, Table 2 lists the perfor-
mance in experiments A-1 to B when only color fea-
tures were used. In all cases, the performance drops
when texture features are omitted. This effect is most
apparent in experiment A-3, where the mean MCC
drops by 0.1. Similar observations were made in the
experiments C-1 to C-3.

Size of Vocabulary. Figure 1 shows the classifi-
cation performance in relation to the number of visual
words in the dictionary for experiment A-3. It can be
seen that the performance slightly increases with the
size of the vocabulary but seems to hit a limit at 30
visual words. In the other experiments, the effect was
even less pronounced. In any case, the impact seems
very small to the point that it may be explained by sta-
tistical fluctuations. This suggest that in production
systems this parameter can be deliberately ignored.

4 Conclusion

We presented a novel method to derive intermedi-
ate feature representations for the automated visual
inspection of bulk materials. The method adapts the
well known bag of visual words framework to the needs
of automated visual inspection by (a) dense sampling
and (b) simple features. The resulting descriptors are
invariant to object size and rotation and can encode
color, texture and shape of the object. In our experi-
ments that highlight different sorting problems in the
realm of food inspection we achieved very promising
results; in some experiments classification was nearly
flawless. At the same time, our method is virtually
parameter free and therefore allows non-experts to set
up and use the system; they only need to provide a
labeled training set.
In the future, we plan to investigate the use of sim-

pler classifiers that are more open to human interpreta-
tion (e.g. decision trees). Furthermore, we will explore
methods to remove non-informative visual words and

M
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0.89

0.91

K=10 K=20 K=30 K=40

Figure 1: Classification performance in relation to
number of visual words in experiment A-3. The error-
bars show the standard deviation in the 10-fold cross
validation.

to include a reject-option either in at feature-level or
in the classifier. Another interesting research opportu-
nity concerns feature drift, i.e. adaption of the method
to accommodate products that change appearance over
time, for example during a single harvest season.
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E. Moltó. Development of a machine for the auto-
matic sorting of pomegranate (Punica granatum) arils
based on computer vision. Journal of Food Engineer-
ing, 90(1):27–34, Jan. 2009.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints.
In ECCV, pages 1–22, 2004.

[4] C.-J. Du and D.-W. Sun. Learning techniques used in
computer vision for food quality evaluation: a review.
Journal of Food Engineering, 72(1):39–55, Jan. 2006.

[5] N. Duffy, J. Crowley, and G. Lacey. Object detection
using colour. In ICPR, volume 1, pages 700–703. IEEE
Comput. Soc, 2000.

[6] E. N. Malamas, E. G. Petrakis, M. Zervakis, L. Petit,
and J.-D. Legat. A survey on industrial vision sys-
tems, applications and tools. Image and Vision Com-
puting, 21(2):171–188, Feb. 2003.

[7] B. Matthews. Comparison of the predicted and ob-
served secondary structure of T4 phage lysozyme. Bio-
chim Biophy Acta, 405(2):442–451, Oct. 1975.

[8] T. Ojala, M. Pietikainen, and T. Maenpaa. Multireso-
lution gray-scale and rotation invariant texture classi-
fication with local binary patterns. PAMI, 24(7):971–
987, July 2002.

[9] F. Perronnin and C. Dance. Fisher Kernels on Vi-
sual Vocabularies for Image Categorization. In CVPR,
pages 1–8. IEEE, June 2007.

[10] F. Perronnin, J. Sánchez, and T. Mensink. Improving
the fisher kernel for large-scale image classification,
volume 6314 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[11] M. Richter and J. Beyerer. Parameter-learning for
color sorting of bulk materials using genetic algorithms.
In Forum Bildverarbeitung, pages 107–118. KIT Scien-
tific Publishing, 2014.

[12] D. Zhang, D.-J. Lee, B. J. Tippetts, and K. D. Lil-
lywhite. Date maturity and quality evaluation using
color distribution analysis and back projection. Jour-
nal of Food Engineering, 131:161–169, June 2014.

213


