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Abstract

Reduced visibility on roadways caused by localized
fog can impact the traffic flow in many ways: traffic
speed, travel time delay, reduced capacity and accident
risks. This paper presents a novel approach to esti-
mate visibility conditions using an onboard camera and
a digital map. Based on a traffic sign detector’s charac-
teristics in the fog, and registering detection by vision
and information encoded in the map, we are able to
accurately determine the current visual range in hazy
conditions. Quantitative results are provided on a large
experimental data set of driving environment with var-
ious level of fogginess.

1 Importance of visual range estimation

Reduced visibility on the highway caused by fog,
dust, or smoke impacts the traffic flow: traffic speed,
speed variance, travel time delay, reduced capacity and
accident risk. The extreme unpredictability of such
natural phenomena, especially in term of density and
spatial extent, often makes it impossible to respond in
a timely fashion to sudden local change in visibility
conditions.

According to a study based on NHTSA data [1] over
10 years (2002-2012), in the US only three percent (3%)
of weather-related crashes happened in the presence of
fog. Even though accidents caused by this type of visi-
bility impairment represent a small percentage of total
accidents on highways, they are generally catastrophic
and deadly: 9% of weather-related fatalities.

One of the many challenges faced by vehicle vi-
sion applications is the impact of adverse conditions
through sensors impairment, especially cameras. Opti-
mizing ADAS performance by mitigating the effects of
weather on the roadways requires accurate, timely, and
reliable information on current weather and visibility
conditions. Fog detection and monitoring is however
often prone to the unpredictable nature of fog with
sudden changes and local variations.

This paper presents a method to detect hazy situa-
tions and estimate the visibility distance by detecting
traffic sign and using a priori information on their im-
plantation on the infrastructure. A forward facing in-
vehicle camera grabs images of the road environment
in conjunction with a road sign detector. Detected re-
gion of interest (ROI) are associated to the true road
sign location extracted from a digital map encoding an
accurate and up-to-date inventory of traffic signs. Reg-
istration of these two sources of information enables an

estimation of the visibility distance under hazy condi-
tions.

Section 2 gives an overview of onboard sensors-based
methods for visual range estimation. Section 3 presents
the traffic sign detector and the effects of reduced vis-
ibility on its operating range. The method to infer
visibility distance from traffic sign detection and map
informations is described in Section 4. Experimental
results are presented in Section 5.

2 Previous works in visibility characteriza-
tion

By convention, the meteorological visibility distance
is usually defined as the maximal distance an object
can be seen with a contrast of five percent. Follow-
ing the Koschmieder law modeling the fading effect of
fog on the albedo of objects, visibility distance dvis

is defined as a measure inversely proportional to the
extinction coefficient of the fog β [2]: dvis = ln(20)

β .
Authors seldom tackled the issue of fog density es-

timation (β or dvis) with onboard sensors. Proposed
methods in this area can be classified according to the
type of sensors they require (mono-camera, stereo rig,
radar) but also to the type of precision they output
(fine grained or coarse estimation):

• Mono-camera approaches with global [3] or local
features [2, 4].

• Stereovision-based methods [5] analyzing obsta-
cles segmented from the disparity map.

• Heterogeneous sensors fusion of image-based and
radar detection of the preceding vehicle [6, 7].

Approaches processing images are mostly based on
some kind of contrast measurement at a signal level
whereas when a radar is used, the inference is made at
an object level.

Mori and al [6] detect vehicle in the image and com-
pare the ROI to a reference rear-view image of a vehicle
in clear weather: the distance between the two images
and the vehicle distance given by a radar are used to
compute the extinction coefficient β. To overcome us-
ing a reference image, Gabb and al [7] infer visibility
condition on the object level instead of the signal level.
They detect preceding or oncoming vehicles in the im-
age and, with probabilistic model, infer the visibility
distance from the radar output. Our work is mostly
related to the approach of Gabb and al [7]: instead of
using a radar and detect obstacles, we use infrastruc-
ture landmarks encoded in a digital map and, with
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Figure 1. Traffic sign detection with increasing
density of fog: BCT operating range decreases
with fogginess.

ego-localization, register them with camera-based de-
tections. Our approach is especially relevant as the
map information are not degraded by adverse weather
conditions. We will keep the formalism close to the one
proposed in [7] as much as possible.

3 Traffic sign detection under degraded con-
dition

3.1 Traffic sign detection with BCT

In this paper, we used the Bilateral Chinese Trans-
form BCT [8] which is well-suited for circular (prohi-
bition and bound such as speed limit) and polygonal
shapes, other than triangles. The basic of the algo-
rithm is to evaluate the amount of symmetry between
the gradient of two edgels and to increment the vote
for their center points accordingly. A large literature
can be found on the performance and characterization
of the BCT [8].

3.2 Impact of fog on traffic sign detection

A recent study has characterized the behavior of the
BCT model under foggy conditions [9]. The main re-
sults of this study is a measurement of the evolution

Figure 3. Detector sensitivity to the fog: visibility
distance versus BCT operating range.

of the operating range dsign of the detector w.r.t the
visibility distance dvis of the fog. The operating range
is a statistical measure of the maximal distance a traf-
fic sign can be detected by BCT (its detectability dis-
tance). Let us explain the meaning of statistical here:
a road sign placed at a distance smaller than dsign has
more than 80% chance to be correctly detected.

As expected, traffic signs are detected at shorter
range dsign when the haziness is higher, as illustrated
in Fig. 1.

3.3 Visual range from operating range

Instead of studying the effect of fog density on the
operating range dsign as in [9], we propose to model
the visibility distance as a function of the operating
range:

dvis = f (dsign) = ad3
sign + bd2

sign + cdsign + d (1)

f is a third degree polynomial fitting the detector re-
sponse to the fog level; it is represented in Fig. 3.

In Fig. 3, the visual range dvis is plotted as a func-
tion of the operating range dsign. Let us call f this
function: dvis = f (dsign). This f function enables a
measurement of the visual range knowing the distance
a road sign is first detected in a video sequence, when
a road sign comes out of the fog close enough to be
detected. For instance, if a road sign is detected at
100 m (and not before), we can presume the visibility
distance to be f (dsign) = 250 meters. Now, to know
dsign, we first need to associate detected ROI and the
range x of traffic signs at every time.

4 Map-Aided visual estimation of visual
range

4.1 Overview of the approach

Fig. 2 illustrates how the system works. Road signs
are detected from a mono-camera, and associated to a
set of road signs in a digital map encoding their loca-
tion in the world frame coordinate. With GPS/IMU
(Inertial Measurement Unit) navigation data, we are
able to locate the user on the road and, with cam-
era calibration parameters, to project ground data of
map’s road signs in the image. The distance x of each
traffic sign to the camera can then be retrieved.

Traffic sign ROIs from the image-based detector and
from the map are then associated. From the computed
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Figure 2. System overview: road signs detected in the image are matched with those encoded in the map to
estimate the visibility distance using a probabilistic framework.

data association weights, detection range of each ROI
can be estimated, and the visual range can be inferred
as it is at least the road sign’s distance (when it is
first detected). Each punctual range estimation x in-
ferred this way gives rise to an individual measurement
z modeled as a i.i.d. Gaussian random variable with
mean at the detected road sign’s distance x. Following
[7] formalism, each measurement is assigned a proba-
bility of correctness p(c) reflecting the registration of a
detected ROI and map data’s projection in the image.

Previous measurements coming from road signs pre-
viously assessed during the vehicle journey are further
combined to the current one using a Gaussian Mixture
Model (GMM). A simplified mixture reduction step
estimates the operating range dsign of the road sign
detector under current fog conditions. Using the BCT
fog characteristic function f , the visibility distance can
be deduced.

4.2 Visibility range from traffic sign location

When a traffic sign is on the vehicle driving envi-
ronment, it is first invisible because of the fog. As
the ego-vehicle is going forward, traffic sign’s visibility
increases until it can be detected by the BCT. The dis-
tance dsign at which the road sign is first detected is
extracted from the map data using the vehicle absolute
localization.

Distance dsign gives rise to a sample measurement of
the visual range defined as x = f (dsign). A continuous
random variable z normally distributed with a mean at
range x represents this measurement: z ∼ N (x, σ2). In
[7], its standard deviation is inversely proportional to
a confidence level p(c): σ = 1/

(√
2πp(c)

)
.

However, it is seldomly the case so, if accuracy of the
lateral positioning of the vehicle cannot be ensured, a
better choice is to set arbitrarily p(c) = 1. It is the
setting in the tests of [7], and it enforces a practica-
bility of the framework with a reasonable structure for
recovering the error of both ego-localization and traffic
sign detection. The method is then only sensitive to
the distance dsign estimation.

4.3 Filtering outliers for robust estimation

The method is sensitive to the quality of the operat-
ing range measurement dsign, therefore it is sensitive
to the ego-localization accuracy. The operating range

measurement in itself is a variable as, with same visi-
bility conditions, two different traffic signs are usually
not detected at the exact same distance.

We propose a filtering process that allows the au-
tomatic selection of outliers visual range measurement
which could be responsible for performances degrada-
tion. It temporarily isolates measurements that do not
fit the current pattern of estimated visual range data
in the Z set. In order to do so, a k-means cluster-
ing taking into account p(c) values is performed with
k = 3 clusters, as we expect that some samples are
overestimated, some are underestimated and one set
of measurements is correct. The two minority clusters
are discarded from the GMM reduction process.

The outliers are not discarded from Z: this set grows
as new measurements are made. Former data are be-
coming less and less meaningful as time (or traveled
distance) goes by. Their influence can be decreased by
diminishing their value of p(c) over time.

4.4 Gaussian Mixture Model

Each measurement made from a traffic sign is mod-
eled by a Gaussian z. A set of N Gaussian measure-
ments Z = {zk}N

1 collected during time are linearly
combined to create a more sophisticated density. A
Gaussian Mixture Model (GMM) is formed by weight-
ing each mode equally.

We used a simple scheme for mixture reduction, a
weighted sum for final estimate μ:

μ =
∑

k∈J p(ck)zk∑
k∈J p(ck)

σ2 =
∑

k∈J p(ck) (zk − μ)2

M−1
M

∑
k∈J p(ck)

(2)

J being the set of index of the majority cluster issued
by the outliers filtering process.

5 Experiments

5.1 Foggy images test database

Due to the difficulty to collect a set of images with
various level of fog, we used a database of simu-
lated images under controlled atmospheric conditions.
It is a sequence of synthetic images containing road
signs (speed, pedestrian, stop) captured with a camera
placed onboard a vehicle. The vehicle moves forward
on a track and images are acquired every 5 meters,
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Figure 4. Visual range estimation performances:
(top) estimated visibility distance de

vis versus
ground truth distance d∗vis; (bottom) estimation
error δdvis.

which is classical for ground surveys by mappers such
as OpenStreetMap or Google Street.

The database features 6 density of fog , with a visi-
bility distance ranging from 100m to 400m: dense fog
dvis = [100m, 200m] to moderate dvis = [200m, 300m]
to light dvis = [300m, 400m]. For each density level,
504 images (1400×600) are available, Fig. 1 gives an ex-
ample of simulated images with homogeneous fog. The
ground truth of each sign was made available: sign’s
location and range dsign.

5.2 Visibility range for various level of fog

Fig. 4 illustrates the accuracy performances of the
approach. The first graphic plots the visibility dis-
tance de

vis estimated by the algorithm w.r.t. the true
visibility distance d∗vis. The second graph is the rela-
tive estimation error δdvis = (de

vis − d∗vis). Each point
represents the final estimation made over 504 images.

Three domains of fogginess are identified, from dense
to light. Each domain is accurately characterized by
the method, since light fog is classified as light fog,
moderate as moderate and dense fog as dense fog. Now
going into accuracy of visibility distance estimation,
the maximal error is less than 28 meters.

Light fog visibility is underestimated but its char-
acterization is relevant with an error of less 25 me-
ters: δdvis < 25m. On the set of data with fog
density d∗vis = 300m, the estimation is very close:
de

vis = 285m.
Estimation over a moderate fog is the more accurate

with an error δdvis < 18m. The estimation is de
vis =

245m for d∗vis = 250m, and de
vis = 218m for d∗vis =

200m. The algorithm is correct as moderate fog is
classified as moderate, and slightly more accurate than
in the light fog domain.

On the sets of heavy fog, the accuracy decreases,
with an error of up to 28 m: δdvis < 28 m. The pro-
posed algorithm overestimate the density of fog with an
estimation at de

vis = 72m for d∗vis = 100m, and slightly
underestimate it with de

vis = 172m for d∗vis = 150m.

However, it can still be considered as an accurate mea-
surement.

6 Conclusion and perspectives

This paper introduced a novel approach for estimat-
ing visibility condition under hazy situations, using an
onboard camera and a digital map. Visual range is
estimated by detecting traffic sign and using a priori
information on their implantation on the infrastruc-
ture. Detected region of interest (ROI) are associated
to the true road sign location extracted from a digital
map encoding an accurate and up-to-date inventory of
traffic signs. The method works on image sequences by
statistically analyzing the distance a traffic sign is first
detected. Exhaustive experimental tests are reported
for various density of haze.

To our knowledge the reported results are the more
thorough in this field of research, other papers showing
results on few samples or a video sequence. Registra-
tion of the two sources of information, road sign de-
tection and their location according to a map, leads to
an accurate visual range estimation for dense to light
fogginess.
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