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Abstract

Obstacle detection for advanced driver assistance sys-
tems has focused on building detectors for only a few
number of object categories so far, such as pedestrians
and cars. However, vulnerable obstacles of other cat-
egories are often dismissed, such as wheel-chairs and
baby strollers. In our work, we try to tackle this limita-
tion by presenting an approach which is able to predict
the vulnerability of an arbitrary obstacle independently
from its category. This allows for using models not
specifically tuned for category recognition. To classify
the vulnerability, we apply a generic category-free ap-
proach based on large random bag-of-visual-words rep-
resentations (BoW), where we make use of both the
intensity image as well as a given disparity map. In ex-
perimental results, we achieve a classification accuracy
of over 80% for predicting one of four vulnerability lev-
els for each of the 10000 obstacle hypotheses detected in
a challenging dataset of real urban street scenes. Vul-
nerability prediction in general and our working algo-
rithm in particular, pave the way to more advanced rea-
soning in autonomous driving, emergency route plan-
ning, as well as reducing the false-positive rate of ob-
stacle warning systems.

1 Introduction

Vehicle vision systems are a key component of today’s
advanced driver assistance systems (ADAS) and espe-
cially automatic obstacle detection systems increase
road safety and driver awareness.
In this paper, we contribute towards increased road

safety by putting the objects in front of the vehicle
into focus. We propose an approach that allows for
a precise vulnerability classification of arbitrary obsta-
cles that goes beyond using detectors built for a few
specific categorical objects, like pedestrians and cars.
Our work builds upon the definition of vulnerability

levels for arbitrary obstacles suggested in [13]. These
classes predict the damage severity from the obstacle’s
perspective when assuming a collision with the driver’s
vehicle. Four classes express small, medium, heavy,
and fatal collision consequences. The vulnerability lev-
els form supersets of object categories and provide a
more general vulnerability distinction of obstacles of
the scenery ahead the vehicle, which is important to
rely on in situations of accident prevention or mitiga-
tion. To further illustrate the significance and com-
plexity of the problem, Fig. 1 shows such an emergency
situation where the driver is required to take actions to
prevent crashing with an obstacle ahead, i.e., the per-
son in the wheel chair. Knowing about the vulnerabili-
ties leads to new evasion route planing with calculated
risks for the obstacles and increased safety for very vul-
nerable ones. In case of Fig. 1, evading into the least

!small
medium

heavy
fatal

Vul
ner

abi
lity

?

Figure 1: Evading in emergency situations in which breaking is
too late: Knowing the vulnerability of obstacles ahead is impor-
tant for the driver’s evasion strategy to save the person in the
wheel chair.

vulnerable boxes would save the person in the wheel
chair without crashing into the oncoming traffic.
For vulnerability classification, we use large random

codebooks of local descriptors built in a completely
unsupervised manner from given gray scale images and
disparity maps. We present an in-depth analysis of our
approach in all its aspects and design choices. Compar-
ing with the baseline classification of [13], we show that
our enhanced approach leads to an improved vulner-
ability classification benefiting from using multi-scale
features extracted from multi-cue data of gray scale
images and disparity maps. The approach we present
here can be applied to the results of any obstacle de-
tection algorithm. We evaluate our algorithm on a
very challenging real-world street scene dataset, which
provides human-annotated vulnerability labels and in-
cludes scenarios where reasoning beyond the object-
specific category spectrum is necessary. In a human
experiment, we show that our problem of evaluating
limited visual information to infer vulnerability is chal-
lenging even for human experts.
The paper is organized as follows: First, we review

related work in Sect. 2 and explain the vulnerability
classes in Sect. 3. Our vulnerability classification ap-
proach of obstacle hypotheses is described in Sect. 4.
In Sect. 5, we state the experimental setup and dis-
cuss the obtained evaluation results. We conclude the
paper in Sect. 6 with a summary.

2 Related Work
Our method is based on techniques used in image
categorization, such as local features [2] and bag-of-
visual-word models [4, 9]. In automotive applications,
these methods have been applied, e.g., for understand-
ing street scenes by semantic pixelwise labeling [14].
Our application scenario is also related to object and
obstacle detection. Vulnerable road users are com-
monly recognized as individual objects by specialized
category-specific detectors for a limited number of ob-
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Figure 2: Visualization of an example obstacle hypothesis and the steps for densely extracting multi-scale descriptors within the
hypothesis’ expanded boundaries using the underlying image data.

jects, like e.g., pedestrians [5], bicyclists [7], or vehicles
[3]. The KITTI benchmark [8] provides an overview of
current state-of-the-art object-specific detection algo-
rithms. Unfortunately, we cannot use the extensive
KITTI stereo vision dataset, since it only focuses on a
few common object categories, provides no vulnerabil-
ity label information, and completely neglects uncom-
mon categories as well as obstacles of small vulnera-
bility. In general, pre-defining important categories in
automotive environments is likely to be limiting and
unable to reflect the huge variety of obstacles that can
be observed. It is simply impossible to build enough
specific classifiers for each object that might appear in
front of a vehicle. In that context, the vulnerability
levels, first presented by us in [13], provide a more gen-
eral measure, not bound to specific objects but visual
patterns.
More generally, obstacle detection provides object-

independent hypotheses of obstacles ahead a vehicle.
We only point to a few related works in that area,
since we do not perform obstacle detection, but apply
our methods on hypotheses provided by the dataset
we use. For example, [15] fuses 3D Lidar data and
single camera images to generate obstacle hypotheses.
In the related area of generic object detection [1, 16]
predict bounding boxes of arbitrary objects in images
independently of their object category. These methods
can also be extended to videos and temporal consistent
hypotheses [11] and used to generate input hypotheses
for our algorithm, which then predicts the vulnerability
level. Therefore, this line of research is complementary
to ours.

3 Levels Of Vulnerability
Following the suggested vulnerability classes in [13], we
distinguish between four discrete levels of vulnerability
shown in Fig. 1 with their color coding. They express
the expected severity of damage from the object’s per-
spective when assuming a collision with the driver’s
vehicle. The highest, fatal vulnerability is assigned to
vulnerable road users and indicates all human-related
objects like, e.g., pedestrians, a baby stroller, a bicycle
with driver, or a wheel chair with a person. Further-
more, the vulnerability classes heavy (oncoming traf-
fic) and medium (parked or ahead driving vehicles)
distinguish vehicle obstacles evaluating how protected
a driver is by its car and how severe accident conse-
quences would be. All background obstacles like, e.g.,
walls, trees, or poles, are considered as small vulner-
ability since they are not related to humans. In case
of different vulnerable obstacles in a hypothesis, we
prioritize the most vulnerable obstacle to set the vul-
nerability class for the entire hypothesis.

4 Vulnerability Prediction Of Obstacles
Our approach consists of two steps: obtaining obstacle
hypotheses and predicting their vulnerability level. We

briefly describe the step of obstacle hypotheses genera-
tion, but explain the vulnerability prediction in detail.

4.1 Obtaining obstacle hypotheses
Our vulnerability prediction method works on given
bounding boxes as obstacle hypotheses for a single im-
age. In general, any obstacle detection method could
be used for this step (Sect. 2). In our case, we use
hypotheses generated in real-time by a proprietary ve-
hicle stereo camera [6] with build-in obstacle detection.
Some hypotheses have the challenging properties that
(1) obstacles located close together can result in a single
large object hypothesis, and (2) a distinct real-world
object might only be partially covered by a hypothesis.
The hypotheses we obtain are given as a 3D bound-

ing box or a 3D plane segment (Fig. 2.1). After ap-
plying the stereo geometry and projecting the 3D hy-
potheses into the image coordinate system, we use their
polygonal 2D shape to obtain the obstacles image areas
for subsequent feature extraction steps (Fig. 2.2).

4.2 Vulnerability prediction with local statistics
Our approach focuses on building a classification
pipeline without object category-specific models and,
in contrast, tries to predict vulnerability levels directly.
The image features for our application need to general-
ize visual properties for the training examples, so that
also new obstacles can be described and assigned to
one of the vulnerability classes.
The challenges described in Sect. 4.1 rule out fea-

tures which assume a rigid constellation of the objects,
such as HOG templates. The large variety of the ap-
pearances in each of the vulnerability levels demands
for a fairly complex feature representation. To tackle
both, we use a large bag-of-visual words representa-
tion [4] extracted in a completely unsupervised manner.
The histograms created by the BoW pipeline reflect
distributions of visual features inside a given obstacle
hypothesis without assuming a rigid constellation and
describe similarities to the training obstacles. Without
spatial pooling the histograms can handle partial ob-
servations as well as important substructures in large
hypotheses independently of their position in the hy-
pothesis. After L1 normalization, a BoW histogram is
also invariant to the number of extracted descriptors
in the hypothesis, which is important especially in our
case with obstacles of varying distance to the car.

Dense local features We follow the recommen-
dation of [9] and apply a dense grid feature extraction
only at grid points inside the bounds of the obstacle
hypothesis (Fig. 2.2). In particular, we use RootSIFT
descriptors [2] and extract them from the gray scale
image as well as the disparity map. The RootSIFT
descriptor forms a local description of the underlying
image patch by building histograms of image gradi-
ents. To describe obstacles independently from their
distance to the camera and size in the image (scale
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Table 1: Evaluation results for different BoW approaches on
single- and multi-cue data. Also shown are the results for a
random classification based on the dataset’s class distribution
and the results of a human expert classification.

Algorithm ACC ARR

Random Guessing 43.9 25.0

Human Expert 91.7 83.6

Single cue: image or disparity
image cue (presented in [13]) 79.4 57.9
disparity cue 79.5 65.6

Multi cue: image and disparity
Fusion of SIFT descriptors 83.6 69.1
Fusion of BoW histograms 83.5 67.1

invariance), we extract the descriptors using multiple
scales. Applying S different scales (i.e. cell sizes)
si (1 ≤ i ≤ S) during dense descriptor extraction,
we obtain S descriptors at each grid point (Fig. 2.4)
Given the cell sizes si, we expand a given hypothesis by
2 ·max1≤i≤S(si) pixels (Fig. 2.3). So, we obtain more
descriptors close to the original border incorporating
information about the obstacle’s shape properties and
background separation.

Large random codebooks All descriptors ex-
tracted from all training object hypotheses are used
to build a codebook of N visual words describing
reoccurring and striking visual features. We show
that using large codebooks built by randomly select-
ing N > 10000 descriptors as cluster centers [4] is
indeed beneficial for our application, due to the vast
variety of the input data. In our experiments, we also
compare this approach with the common k-Means clus-
tering scheme. Histograms are computed for all obsta-
cle hypotheses by finding the best matching codebook
entries for each RootSIFT descriptor (hard quantiza-
tion). During this histogram generation all spatial in-
formation inside a hypothesis is discarded on purpose
as described above. We further transform the L1 nor-
malized BoW histograms again by performing element-
wise square-rooting, to benefit from the non-linearity
of the Hellinger kernel [12] and being able to still use
a linear SVM for classification.

5 Experimental Evaluation
5.1 Dataset
For the evaluation, we use the labeled dataset we
presented in [13] which was recorded by a propri-
etary stereo camera mounted behind the front wind-
shield. It consists of 17 authentic real-world street
sequences with 2428 gray scale images and disparity
maps (1024× 460px), as well as over 9950 obstacle hy-
potheses obtained with the camera’s built-in obstacle
detection system. All hypotheses contain ground-truth
vulnerability labels and show much more small vulner-
able obstacles than fatal ones.

5.2 Evaluation results
We quantitatively evaluate our algorithms with the ac-
curacy (ACC) and the average recognition rate (ARR)
to account for an unbalanced class setup. We perform
17 leave-one-out evaluation splits using 16 sequences
for training and the remaining one for testing. We run
5 trials per split to account for the random subset se-
lection during codebook creation.

Human and random performance To under-
stand the difficulty of the task we are confronted with,

good classification results:

poor classification result:

Figure 3: Qualitative overview of some good and poor results of
classifying vulnerability classes using our proposed approach.1

Best viewed in color. Color coding according to Figure 1.

we state the upper and lower bound of the classification
performance in Tab. 1. Randomly assigning a vulner-
ability class based on the dataset’s class distribution
gives a lower bound of 43.9% ACC and 25.0% ARR
(Random Guessing). For the upper bound, a human
expert classified the vulnerability of a subset of the hy-
potheses by hand. Seeing only cropped image regions,
the expert achieved only 91.7% ACC and 83.6% ARR.

Advantages of large random codebooks We
choose codebook sizes N between 100 and 200000 en-
tries computed from RootSIFT descriptors on the im-
age and disparity map cues with a fixed number of
4 different scales. Empirically, we found that large
random codebooks with N∗ = 25000 codebook entries
provide the best result of 83.0% ACC and 66.5% ARR.
k-Means clustering leads to a comparable performance
but requires a higher computational time unsuitable
for large codebook sizes.

Evaluation of multiple scales In our experi-
ments, we used sets of five to ten scales with increas-
ing cell sizes ranging between 4 and 34 pixels. Us-
ing N∗ = 25000 from the previous experiment, we
obtained the best overall classification performance of
83.6% ACC and 69.1% ARR when using S∗ = 9 differ-
ent scales. Fig. 3 gives an impression of some results
of our algorithm using this setup.1 The ROC curves in
Fig. 4 (right) indicate that especially classifying fatal
vulnerable hypotheses profits from more scales.

Combination of intensity and disparity Fur-
thermore, we evaluate the impact of using the combi-
nation of image and disparity data and compare two
strategies for fusion of the multi-cue features:

1. Fusion of RootSIFT descriptors: Concatenating
the descriptors extracted from image and disparity
data at the same position and scale leads to a more
complex local descriptor of dimension 256.

2. Fusion of BoW histograms: Two independent
BoW histograms for each cue are concatenated.

Based on the previous experimental results, we use
N∗ = 25000 and S∗ = 9. The results of the com-
parison are shown in Tab. 1. They show that the
fusion at the descriptor level outperforms the second
approach. Comparing to our single cue baseline of

1More evaluation results and images can be found on our website:
http://www.cv-inf.uni-jena.de/vulnerability
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Figure 4: ROC curves for the classification performance of the
BoW pipeline for the fatal class: (left) using RootSIFT features
of different cues, gray scale images (cue I, [13]), disparity maps
(cue D), and both gray scale image and disparity maps (cue
I+D); (right) evaluation with different number of scales. The
individual AUC in percent is shown in parentheses.

Table 2: Comparison of our algorithm with a proprietary pedes-
trian detector for the task of detecting vulnerable obstacles of
the fatal class.

Algorithm ACC ARR

Our approach 95.0 66.8
Pedestrian detector 93.2 65.3

[13] that only uses gray scale images and small code-
books, our presented multi-cue and multi-scale ap-
proaches achieve a notable higher classification perfor-
mance. Fig. 4 (left) shows the receiver operating char-
acteristic curves (ROC curves) for the cue comparison
for the fatal class. It can be seen that using both the
image and disparity map cue lead to a gain of 6.9% in
area under the curve (AUC).
In preliminary experiments, we also tried other lo-

cal descriptors such as histograms of oriented gradients
(HOG, [7]) and local binary patterns (LBP, [10]), but
both resulted in a lower overall performance.

Predicting fatal vulnerability is more than
pedestrian detection To show that vulnerability
prediction goes beyond classical pedestrian detection,
we also compared with a proprietary state-of-the-art
pedestrian detector. Since this detector can only dis-
tinguish between fatal (pedestrian) and all other vul-
nerability levels (no pedestrian), we also reduced the
outputs of our algorithm to this binary setting. The
results presented in Tab. 2 show that our approach out-
performs the pedestrian detector, demonstrating that
a rigid detector alone is not enough for detecting vul-
nerable obstacles.
Computational Runtime The largest part of the

computational runtime is covered by the multi-scale
and multi-cue feature extraction (90%), highly depend-
ing on S. The histogram generation only takes about
7% and the classification 3% (linear SVM). The high-
est speed-up can be achieved by reducing the number
of extracted scales S decreasing the feature extraction
runtime. On an Intel i7-4770 with 3.4 GHz and imple-
mented in MATLAB (single threaded) our multi-cue
algorithm runs in between 76ms (S = 1, N = 1000)
and 969ms (S∗ = 9, N∗ = 25000) per image.

6 Conclusion
In this paper, we present an approach to classify the
vulnerability of arbitrary obstacle hypotheses indepen-
dently of object category models, such as pedestrian or
car detectors. The main goal is to directly predict the
vulnerability of the obstacle from the appearance with-
out an intermediate layer restricted to human catego-
rization. In our approach, we use a bag-of-visual-words
approach with a large random codebook and we evalu-
ated our approach on several challenging street scenes

with ground-truth vulnerability labels. We were able
to show that this challenging problem is feasible with
current state-of-the-art techniques and a combination
of disparity and intensity information. Furthermore,
we outperform a proprietary pedestrian detector by
classifying vulnerable obstacles that do not naturally
fall into one of the typical object categories. From an
application point of view, we show that the functional-
ity of an existing stereo vision camera that is already
being deployed in real-world cars with a basic obstacle
detection can easily be extended towards vulnerability
prediction and advanced reasoning about the obstacle.
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