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Abstract

In this study, we propose a novel scene descrip-
tor for visual place recognition. Unlike popular bag-of-
words scene descriptors which rely on a library of vec-
tor quantized visual features, our proposed descriptor
is based on a library of raw image data, such as pub-
licly available photo collections from Google StreetView
and Flickr. The library images need not to be associ-
ated with spatial information regarding the viewpoint
and orientation of the scene. As a result, these im-
ages are cheaper than the database images; in addi-
tion, they are readily available. Our proposed descrip-
tor directly mines the image library to discover land-
marks (i.e., image patches) that suitably match an in-
put query/database image. The discovered landmarks
are then compactly described by their pose and shape
(i.e., library image ID, bounding boxes) and used as a
compact discriminative scene descriptor for the input
image. We evaluate the effectiveness of our scene de-
scription framework by comparing its performance to
that of previous approaches.

1 Introduction

Scene description is an important first stage in vi-
sual place recognition (VPR), which allows one to
search through a pre-built image database to find vi-
sually similar views. The most popular scene descrip-
tion method is to translate each image into a bag
of vector-quantized visual features, termed as visual
words, and then apply document retrieval techniques
that are based on the bag-of-words document model
(BoW) [1]. Many recent VPR systems are based on the
BoW scene description scheme. Despite its computa-
tional efficiency and robustness, these BoW scene de-
scriptor -based VPR systems suffer from vector quan-
tization errors, and often fail to handle the appearance
changes across views that appear in practice [2].

In this study, we address this issue by leveraging
image based prior. Unlike popular BoW scene descrip-
tors which rely on a library of vector quantized visual
features, our proposed method is based on a library
of raw image data, such as publicly available photo
collections from Google StreetView and Flickr. These
library images need not be associated with spatial in-
formation such as the viewpoint and orientation of the
scene, and are thus cheaper than the database images;
furthermore, these library images are readily available,
which is an added advantage. In our approach, the de-
scriptor directly mines the image library to identify
landmarks (i.e., image patches) that suitably match
an input query/database image. The discovered land-
marks are then compactly described by their pose and
shape, i.e., library image ID, bounding boxes (BB),
and used as a compact discriminative scene descrip-

tor for the input image. We evaluate the effectiveness
of our scene description framework by comparing its
performance to that of previous approaches.
The problem associated with conventional scene de-

scriptors for VPR have been studied extensively. Lo-
cal feature approaches such as BoW scene descriptors
have been widely studied considering various aspects,
including self-similarity of images [3], quantization er-
rors [4], query expansion [5], database augmentation
[6], vocabulary tree [7], global spatial geometric ver-
ification as post-processing [8], and pyramid match-
ing to capture spatial context [9]. Previous researches
on VPR have shown that the BoW scene model is
not sufficiently discriminative and is often unsuccess-
ful at capturing the appearance changes across views
[2]. Global feature approaches such as GIST feature
descriptor [10] (in which a scene is represented by a
single global feature vector) focus on the compactness
of scene description and have high matching speeds.
Other possible representations include those that de-
scribe a scene as a collection of meaningful parts, such
as object models [11] and part models [12]. Although
these approaches may potentially provide rich informa-
tion about a scene, existing techniques rely on a large
amount of training examples to learn about the mod-
els under supervision. Note that our use of a publicly
available photo collection (e.g., Flickr) is different from
that of large-scale geo-localization [13] where the col-
lection is directly utilized as the database rather than
a library.
This study is motivated by the authors’ previuos

works on a novel data mining approach to scene de-
scription [14, 15, 16]. [14] built a prototype method
called “common landmark discovery”, in which land-
mark objects are mined through common pattern dis-
covery (CPD) between an input image and known ref-
erence images. This framework has been further ex-
tended for large-scale visual place recognition by intro-
ducing efficient CPD techniques in [15]. The data min-
ing approach has been utilized for single-view cross-
season place recognition in [16], where objects whose
appearance remain the same across seasons are uti-
lized as valid landmarks. The effectiveness of the
scene description framework was evaluated by com-
paring its performance to that of previous BoW ap-
proaches, and by adapting the Naive Bayes Nearest
neighbor (NBNN) distance metric [17] to our scene de-
scription framework, (“NBNN scene descriptor”). In
contrast, the current study further investigates the ef-
fectiveness of the proposed approach from a novel per-
spective of landmark mining.

2 VPR Framework

The VPR framework consists of three main steps,
including scene parsing, scene description, and scene
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retrieval. First, during scene parsing, an input scene
is analyzed, and landmarks are discovered that effec-
tively explain the input image. Second, the framework
describes the input scene using IDs of the library im-
ages and BBs that crop landmark objects within each
library image. Scene descriptors are also computed
for all images in the image database. Finally, the third
step involves the retrieval of database images using the
computed scene descriptors as the query.

For the above mentioned method, we assume a dic-
tionary or library of random Lo view images to be
given. The library images need not required associated
with spatial information such as the viewpoint and ori-
entation. A small subset of L(L ≤ Lo) appropriate
library images that are most similar to a given input
image are selected and used to interpret the image.
Our experimental results suggest that high recognition
performance tends to be associated with the coverage
of the database images provided by these library im-
ages.

2.1 Scene Parsing

We consider scene parsing as data mining over the
image library. Our scheme begins by over-segmenting
the input scene image into a set of R superpixels and
clustering them into a set of K scene parts, which
will serve as landmark candidates. Then, it evaluates
the usefulness of each landmark region in terms of the
saliency of the region. It selects K landmark regions
with the highest usefulness score, and translates each
of these into a compact VLAD code. VLAD codes are
also computed for each landmark for all images in the
image library. Then, the image library is searched us-
ing theK VLAD codes as query, and a score is assigned
to each library image in terms of the sum of the reverse

rank
∑K

i=1 1/ri of the individual VLAD-based rank-
ing results ri(i = 1, · · · ,K). For image segmentation,
R = 72 superpixels are produced by SLIC superpixel
[18], and clustered into 2R− 1 landmark regions using
hierarchical region clustering method provided in [19].
For saliency evaluation, the PCA-based distinctiveness
score that has been described in [20] is evaluated for
all the SIFTs belonging to the region and these are
summed up to obtain the region’s saliency. To calcu-
late the VLAD codes, method used in [21] is employed.
The number of landmarks K per image controls the
reliability-efficiency tradeoff of our data mining and
currently was set to a relatively high value K = 40
(i.e., put weights on reliability) during our study.

2.2 Scene Description

We describe a scene using L landmarks and each
landmark is described as a pairing of a landmark im-
age ID and a BB of landmark region with respect to
the landmark image. The procedure for discovering
landmark images was as discussed in the previous sub-
section. However, the problem of determining the BB
has not been addressed yet. In the proposed method,
we extract sets of SIFT features from the input and
the library images, FQ and FL, in addition, the near-
est point to each f ∈ FQ among the FL points in the
128-dim SIFT descriptor space, and then use keypoints
{(x, y)} of the nearest point to compute the BB. For
noise reduction, only the middle 80% x (or y) values are

library images database images

Figure 1. Snapshot of our image collection cap-
tured at a University Campus.

used for the computation after all the x (or y) values
are sorted numerically. As a consequence, our scene
descriptor is of the form:

{〈Ii, Bi〉}Li=1 , (1)

where Ii is the ID of landmark image, Bi is the BB
consisting of the top left and the bottom right node,
(xmin

i , ymin
i ) and (xmax

i , ymax
i ), of BB.

2.3 Scene Retrieval

In this final step, we search the image database and
score each database image using the scene descriptor.
To build the database, the image ID Ii with the BB
Bi for each database image is stored in an inverted
file using the element Ii as index. This structure is
an array of Lo inverted lists, one per library image ID.
For database retrieval, each Ii of a given query image is
used as the index and all the database images assigned
to the inverted list associated with this Ii are returned.
To evaluate the similarity between the query and each
of the returned database images, we use the number
of common Ii between the image pair as the primary
similarity measure, and the area of overlap between the
BB pair as the secondary similarity measure.

3 Experimental Results

To evaluate our proposed method, we used an image
dataset consisting of view images captured at a univer-
sity campus, using a handheld camera as the vision sen-
sor. Occlusion is severe in the scenes, and people and
vehicles are dynamic entities occupying the scene. We
took nine different paths three times each, to collect
three independent collections of images of each path,
and used each of them for query, library and database
image collections. The size of each query and library
imageset was 100. The sizes of the database image-
sets were 338, 406, 474, 529, 371, 340, 354, 397 and
328. Fig.1 shows examples of library and database im-
ages. It can be seen that the database consists of near
duplicate images, which makes our scene retrieval a
challenging task.
Fig.2 shows some examples of scene parsing. The

first column in Fig.2 shows the input image and the
following L = 20 columns show the L landmark images
and their BBs that describe the input image. Further,
it is evident that not all the selected landmark images
look similar to the input query image they describe.
Despite this fact, many of the landmark images actu-
ally contribute to obtaining discriminative scene de-
scriptors as we report in the following results.
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Figure 2. Scene parsing. The first column shows the input view image that is to be described. The columns
numbered 1-20 show the L = 20 library images used for describing the input view image.
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Figure 3. Relationship between input and library
images. The x-axis represents the ID of input
image that needs to be classified, whereas the y-
axis indicates the ID of library images used.

Table 1. Performance results.

dataset BoW VLAD
IP

w/o BB w/ BB

0 31.7 26.9 24.2 22.0
1 38.7 27.8 21.9 21.2
2 34.4 14.0 15.3 14.8
3 27.5 20.8 21.6 19.6
4 28.9 17.5 16.2 14.8
5 21.6 17.6 16.9 15.4
6 21.7 27.1 26.4 24.1
7 28.9 28.2 23.1 21.1
8 26.4 23.7 25.2 22.1

Fig.3 shows the relationship between input and li-
brary images. In the figure, “rank” means that the
ranking assigned by our library image selection at the
image description stage. For instance, when we set
L = 20, only “rank:1-10” and “rank:11-20” images are
used for description. We observe that only a small sub-
set of library images tend to contribute to the retrieval
performance.

Table 1 lists performance results. We evaluated the
proposed image based prior method (“IP”) in terms of
the retrieval accuracy and compare it with the BoW
method (“BoW”) [1], and VLAD [21]. For the BoW
method, we employed a visual feature descriptor and
a vocabulary provided in [1]. For VLAD, we em-
ployed the code used in [21]. A series of independent
100×9 retrievals were conducted for each of the 100
random query images of all the 9 different paths. The
retrieval performance was measured in terms of the
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Figure 4. Graph showing the effect of the number
of landmarks used per image during the descrip-
tion process.
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Figure 5. Comparison between cases with and
without BBs.

averaged normalized rank (ANR) as percentage; the
ANR is a ranking-based retrieval performance measure
wherein a smaller value indicates a better retrieval per-
formance. To evaluate ANR, the rank assigned to the
ground-truth relevant image was evaluated for each of
the 100 independent retrievals, and then the rank was
normalized on the basis of the database size and these
ranks were averaged over the 100 retrievals. From Ta-
ble 1, one can observe that our approach outperformed
both BoW and VLAD in most of the retrievals consid-
ered in this study.
We also investigate the influence of the parameter L,

i.e., the number of landmarks used for scene modeling.
Fig.4 shows the ANR performance for different settings
of the parameter L, including L = 10, 20, 30, 40 and
50. As can be seen, the results are comparable to each
other. An exception is the case where L = 10, where
the number of landmarks are too small to make our bag
of landmarks based representation less discriminative.
We also investigated the effect of using BBs on the

retrieval performance. In this study, we conducted an-
other set of experiments using the proposed scene de-
scriptor without using the BBs, as a proof-of-concept,
and compared the recognition performance against
that of the proposed descriptor. Fig.5 shows the com-
parison of results of the proposed descriptor with and
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Figure 6. Snapshot that shows the cases in which
our method fails.

without the BBs. The vertical axis in this figure is the
ANR performance of the case using BBs subtracted
from that of the case without using BBs. It can be
seen that the ANR performance shows an improvement
when the BBs are used for most of the cases considered
in this study. A notable exception is the case where L
is set to a relatively large value, e.g., 50. This is due to
a large number of landmark images that naturally in-
clude dissimilar scenes as we already showed in Fig.3,
and BBs of landmarks with respect to such dissimilar
landmark images provide less meaningful and less re-
liable information. However, it should be noted that
even such dissimilar landmark images do actually im-
prove the scene retrieval performance as we can see in
Fig.4.

Fig.6 reports some examples of failure cases. For
each row, the first column shows the query images,
the 2nd, 3rd, and 4th columns show the images that
received higher similarity score than the ground-truth
images when the proposed method was used, and the
last column shows the ground-truth images. As can be
seen, the proposed approach can be confused if some
database images with locally similar but globally dis-
similar structures that cannot be captured by “bag-of-
X” scene model are included. However, the issue of
the globally dissimilar structure can be mitigated by
introducing some extension to the BoX model such as
spatial pyramid matching; this will form part of our
future work.

4 Conclusions

The primary contribution of this paper is the pro-
posal of a simple and effective approach to VPR. Unlike
popular BoW scene descriptors which rely on a library
of vector quantized visual features, our descriptor is
based on a library of raw image data, such as publicly
available photo collections from Google StreetView and
Flickr; our method directly mines the library to dis-
cover landmarks (i.e., image patches) that effectively
explain an input query/database image. The discov-
ered landmarks are then compactly described by their
pose and shape (i.e., library image ID, BBs) and used
as a compact discriminative scene descriptor for the
input image. Experiments using a challenging dataset
validate the effectiveness of the proposed approach.
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