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Abstract

In this paper, we propose a machine vision 
approach for detecting local irregular brightness in 
low-contrast surface images and, especially, focus 
on mura (brightness non-uniformity) defects in 
Liquid Crystal Display (LCD) panels. A mura defect 
embedded in a low-contrast surface image shows no 
distinct intensity from its surrounding region, and 
even worse, the sensed image may also present 
uneven illumination on the surface. All these make 
the mura defect detection in low-contrast surface 
images extremely difficult.
   A set of basis images derived from defect-free 
surface images are used to represent the general 
appearance of a clear surface. An image to be 
inspected is then constructed as a linear combination 
of the basis images, and the coefficients of the 
combination form the feature vector for 
discriminating mura defects from clear surfaces. In 
order to find minimum number of basis images for 
efficient and effective representation, the basis 
images are designed such that they are both 
statistically independent and spatially exclusive. An 
independent component analysis-based model that 
finds both the maximum negentropy for statistical 
independency and minimum spatial correlation for 
spatial redundancy is proposed to extract the 
representative basis images. Experimental results 
have shown that the proposed method can effectively
detect various mura defects in low-contrast LCD 
panel images.

1. Introduction

Image analysis techniques have played an 
important role in manufacturing for automated visual 
inspection of surface defects. In automated surface 
inspection, defects which appear as local anomalies 
embedded in regular surfaces must be reliably 

detected. Most of the existing defect detection 
methods for uniform surfaces use simple thresholding 
or edge detection techniques [1-4]. Defects in these 
images can be easily detected because they 
commonly have distinctly measured values with 
respect to those of the uniform background. The 
inspection task in the present paper is the detection of 
defects in uniform surfaces that involve low-contrast 
intensities in images. The currently existing methods 
cannot be used to identify the hardly visible defects 
in a low-contrast image.

2. Basis image representation and defect 
detection

Liquid Crystal Display (LCD) panels have been 
important components used for a variety of electronic 
devices such as TV sets, PC monitors, mobile phones 
and digital cameras. The LCD surfaces investigated 
in this study present non-uniform intensities in 
different regions from image to image. Figure 1 
demonstrates a variety of mura defects, in which (a1) 
is a faultless LCD surface image, and (a2)-(a5) 
present four mura images including white spot-, 
black spot-, line- and gravity-mura, respectively. 
Figures 1(b1)-(b5) illustrate the respective enhanced 
images of Figures 1(a1)-(a5). LCDs generally have 
the intrinsic non-uniformity due to the variance of the 
backlight and uneven distributions of liquid crystal 
material [5]. The enhanced images, therefore, result 
in distinctly uneven illumination, which makes the 
defect detection task in enhanced images even more 
difficult and complicated.

In this study, we organize a set of defect-free 
samples as a data matrix D, where each row vector is 
a training image. It is assumed that the observed data 
D is a linear combination of basis imagesY , i. e,

                              D =BY                                 (1)  
where B is the coefficient matrix for the linear 
construction. Note that the proposed model in eq. (1) 
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for mura defect detection is exactly of the same form 
as the Independent Component Analysis (ICA)
model.

For a test image d, it can be synthesized as a 
linear combination of the basis images Y , i.e.,

                        
N

i
iib

1
yYbd                            

(2)
where )...,,,( 21 Nbbbb is the coefficient vector, 

and iy is the thi basis image, i.e., the thi row vector 
in Y , assuming there are N basis images. The 
coefficient vector b can be obtained by

Ydb                                (3)
where Y is the pseudo-inverse of Y , and is given 
by 1TT )( YYY .

The coefficient vector b is used as the feature 
vector for test image d. In order to efficiently 
compute the coefficient vector for manufacturing
implementation, the number of representative basis 
images should be as small as possible so that the 
matrix size of Y and the dimension of b can be 
small.

Assume that there are a total of N training images 
in the data matrix T

21 ]...,,,[ NdddD . The 
coefficient vector ib of the training image id is 

obtained from Niii ...,,2,1,Ydb .

The mean coefficient vector b is given by

                           
N

i
iN 1

1 bb                           (4)

In the defect-detection stage, the similarity 
between a test image td with feature vector tb and 
the representative defect-free image with feature 
vector b can be measured by Euclidean distance: 

teb bb                  (5)

or Cosine distance: 

t

t
cb

bb
bb1 (6)

The selected basis images from a set of defect-free 
training images should have maximum statistical 
independency and minimum spatial redundancy. Let 

T
21 ]...,,,[ NdddD be the data matrix of N training 

defect-free images and Y=WD, where 
T

21 ]...,,,[ NyyyY and .]...,,,[ T
21 NwwwW

Each 2D training image iI of size nm , for 
Ni ,,2,1 , is converted to a vector id of length 

nmL by scanning the pixels from left to right 
and top to bottom. The vector image id is then 
organized as a row vector in the data matrix D. To 

achieve the maximum statistical independency, the 
first objective of the proposed method evaluates the 
negentropy of the basis images Y . That is

Max. 
N
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iGEJ
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where ],,,[ 21 iLiii yyyy , and
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2 )2/exp(1)]([ y , Ni ,,2,1 (7b)

The objective of maximum negentropy considers 
only the statistical independency based on the 
probability distributions of gray values among the 
basis images. To achieve the minimum spatial 
redundancy, the correlation coefficient between any 
two basis images is used as the measure. The 
correlation coefficient evaluates the consistency of 
two signals at coincident locations. If the correlation
coefficient between two signals is high, then they can 
be considered to be spatially duplicated. The 
objective of minimum spatial redundancy of basis 
images is given by the MinMax principle:

  Min 2),(max ji
ji

yy                    (8a)
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iy and jy are the mean values of all elements in 

basis images iy and jy , respectively.
Since we would like to simultaneously maximize 

the statistical independency and minimize the spatial 
redundancy of the basis images, the two separate 
objectives above is merged as a dual-objective 
model, i.e.,

})]([/),(max{Min 22

i
ijiji

GE yyy      (9)

The model comprises two parts, where the 
objective Min 2),(max ji

ji
yy in eq. (9) tends to 

minimize the worst case of spatial redundancy 
between any two basis images, and the objective Min 
1/J(Y) in eq. (9) tries to make the basis images as 
statistically independent as possible.

The dual-objective model proposed involves a 
non-differential function. It is therefore solved by a 
particle swarm optimization (PSO) algorithm [6, 7]. 
The model defined in eq. (9) sets up the objective to 
achieve for some unknown transformation matrix W. 
The stochastic search procedure of PSO can find 
automatically the best matrix W to minimize the 
objective.

3. Experimental results
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This section presents the experimental results 
from a number of low-contrast LCD images to 
evaluate the performance of the proposed method. 
All of the training and test images in the experiments 
are 562562 pixels wide with 8-bit gray levels. The 
training images used to form the data matrix are 
randomly sampled from defect-free LCD panel 
surfaces.

Four defect-free and four defective low-contrast 
surface images of LCD panels containing white spot-, 
black spot-, line- and gravity-mura, as seen in Figures 
1(a2)-(a5), are first used as the test samples for 
demonstrating the efficacy of the proposed method. 
Three faultless LCD panel images are used as the 
training images and, therefore, three basis images are 
obtained. The mean coefficient vector of the three 
resulting basis images derived from the PSO search 
of the proposed dual-objective model is b = [0.0789,
0.5711, 0.0313].  It gives a Euclidean distance of 
0.8165 and a cosine distance of 0.4427 to the training 
sample images. Tables 1 summarize, respectively, the 
resulting Euclidean and cosine distances for the four 
defective sample images from four different models.
The first model is the proposed dual-objective that 
takes into account both statistical independency and 
spatial redundancy. The second model is given by 

2),( ji
ji

MaxMin yy , i.e., the basis images estimated 

should have minimum spatial redundancy. The third 
model is to maximize the negentropy J(Y), i.e., the 
basis images should be statistically independent as 
possible. The basis images derived from models 2 
and 3 are also based on the PSO algorithm. The 
fourth model is also a measure of maximum 
negentropy, but solved with the FastICA algorithm 
[8]. The demonstrated results in Tables 1 and 2 show 
that only the proposed method can effectively detect 
defective images with either the Euclidean or cosine 
distance. The measured distances for the defective 
images are distinctly different from those for the 
defect-free images by using the proposed dual-
objective model.

In order to further verify the detection 
performance of the proposed method, a total of 48
LCD sample images are evaluated, of which 20 are 
defect-free and 28 are defective. The measured 
results are presented as box-plots, and are shown in 
Figures 2 and 3. The box plot shows the minimum, 
maximum, lower and upper quartiles, and the median 
of the distance distribution of the test samples for 
each of the four models. Figures 2(a) and 3(a) show
that the proposed dual-objective model can well 
distinguish the faultless and defective LCD images 
with both Euclidean and cosine distances. The 
distance distributions of the faultless and defective 
test samples are overlapped for the remaining three 
models.

The proposed method was implemented on a 
Pentium 4, 3.2GHz personal computer. The 
computation time of the proposed algorithm with 
four basis images in the defect-detection stage is only 
0.0081 seconds for an image of size 256256
pixels. Even with five basis images, the total 
inspection time is only 0.4752 seconds for a 17”
LCD panel, which usually requires 120 seconds for 
human inspection. It indicates that the proposed 
method is practical for on-line, real-time 
implementation in LCD manufacturing.

4. Conclusions

The proposed method aims at the inspection of 
LCD panel surfaces that contain low-contrast mura 
defects of various sizes and shapes. Experimental 
results have shown that the proposed method can 
effectively detect both small-sized, low-contrast 
defects such as spot-mura and line-mura, and large-
sized defects without clear edges such as the hardly-
detectable gravity-mura. Besides mura defect
detection in LCD panel surfaces, it is believed that 
the proposed method can be applied in general for 
the inspection of surface defects in any low-contrast 
images.
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(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

(a5) (b5)
Figure 1. LCD sample images: (a1) defect-free image; (a2) white
spot-mura; (a3) black spot-mura; (a4) line-mura; (a5) gravity-
mura; (b1)-(b5) enhanced images of (a1)-(a5), respectively.

Table 1. Resulting Euclidean and cosine distances of 
demonstrative defective images (white-spot, gravity-mura, line-
mura and black-spot from left to right) from four comparative
models.

Defective LCD Images

Enhanced images

2

2 ),(
Min

Y
yy

GE
Max ji 1.0591 1.8487 1.8164 2.2632

),(MaxMin 2
ji yy 7.7938 16.8250 6.8048 7.8962

2YGEMax 3.4515 4.7356 4.7278 2.6301

Euclidean
distances

FastICA 7.1271 9.8623 9.7727 6.0115

2

2 ),(
Min

Y
yy

GE
Max ji 0.5671 0.6367 0.6407 0.7612

),(MaxMin 2
ji yy 0.0509 1.8832 1.8861 0.0544

2YGEMax 0.0570 0.0722 0.0780 0.0305

Cosine 
distances

FastICA 0.0595 0.0605 0.0607 0.0455

Table 2. Resulting Euclidean and cosine distances of 
demonstrative defect-free images from four comparative models.

Defect-free LCD Images

Enhanced images

2

2 ),(
Min

Y
yy

GE
Max ji 0.8165 0.3566 0.7691 0.8068

),(MaxMin 2
ji yy 7.7183 1.4760 4.9428 8.7147

2YGEMax 1.3548 1.8340 3.1420 1.3495

Euclidean
distances

FastICA 2.7097 3.6146 6.3717 2.7046

2

2 ),(
Min

Y
yy

GE
Max ji 0.3935 0.2882 0.1998 0.3935

),(MaxMin 2
ji yy 0.9317 0.0379 1.5301 0.0244

2YGEMax 0.4227 0.2042 0.4142 0.4200

Cosine 
distances

FastICA 0.0379 0.0663 1.5527 0.0306

(a) (b)

(c) (d)

eb eb

eb eb

Defect-free           Defective Defect-free           Defective

Defect-free          Defective Defect-free           Defective

Figure 2. Box-plots of Euclidean distances from four different 
models: (a) proposed dual-objective; (b) 2,MaxMin ji yy ; (c)

Max J(Y); (d) FastICA. 

(a) (b)

(c) (d) 

cbcb

cb cb

Defect-free           DefectiveDefect-free           Defective

Defect-free           DefectiveDefect-free           Defective

Figure 3. Box-plots of cosine distances from four different
models: (a) proposed dual-objective; (b) 2,MaxMin ji yy ; (c)

Max J(Y); (d) FastICA. 
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