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Abstract

We present a method of using depth information
provided by an RGB-D sensor, for visual simultaneous
localization and mapping (SLAM), in order to improve
its accuracy. We present a constraint bundle adjust-
ment which allows to easily combine depth and visual
data in cost function entirely expressed in pixel. The
proposed approach is evaluated on a public benchmark
dataset and compared to the state of art methods.

1 Introduction

In computer vision, the process of estimating camera
positions and scene geometry is known as the struc-
ture from motion problem (SFM) or Simultaneous Lo-
calization and Mapping (SLAM). Often Such methods
[9, 6] perform a 3D reconstruction of the primitives ex-
tracted and matched in successive images. This recon-
struction (usually sparse 3D points map) is used to es-
timate the relative motion of the camera. In keyframe-
based SLAM, the camera poses and the 3D point cloud
are simultaneously refined with a Bundle Adjustment
(BA). However, visual SLAM suffers from some limi-
tations. Indeed, with a single camera and without any
assumptions or prior knowledge about the camera en-
vironment, rotation can be retrieved, but translation
is up to scale. Furthermore, visual monocular SLAM
is an incremental process prone to small drifts in both
pose measurement and scale, which when integrated
over time, become increasingly significant over large
distances. It is possible to determine scaling factor
and minimize drift by using a RGB-D camera. This
device captures RGB images along with real scale per-
pixel depth information. With the introduction of Mi-
crosoft’s Kinect, that integrates cheap and lightweight
3D sensors with high resolution, research using RGB-D
sensors greatly increased [1, 2, 3, 4, 10, 13].
The main contribution of this paper is providing a

technique to integrate depth measurements into an ex-
isting monocular visual SLAM system. This consists
of several rather straightforward changes but also on
a way to use depth measurements as additional con-
straint in bundle adjustment. A similar approach has
been proposed by Scherer et al. [11, 12] who revisit
the PTAM algorithm [6] to integrate depth informa-
tion. In this paper, we propose to revisit a keyframe
based SLAM with temporal local BA [9] which is quite
different to the revised PTAM of [11] and to its exten-
sion with graph optimization [12]. Compared to [11]

and [12], we propose a new cost function in the BA
which allows to easily combine depth and visual infor-
mation without using any additional weight factor like
proposed in [11], as it is totally expressed in pixel. We
present this new approach and evaluate it on a pub-
licly available RGB-D benchmark 1. We compare its
performances to the previously cited methods [11, 12],
and other methods of the state of art.
The rest of this paper is organized as follows. In sec-

tion 2 we discuss related work. Section 3 presents how
we integrate depth information in the visual SLAM
process. Experimental results are presented in section
4. Conclusion and further work are presented in sec-
tion 5.

2 Related Work

There has been a large amount of work on SLAM
using RGBD cameras. Given the corresponding depth
for each feature the scale ambiguity can be resolved
and the initialization of pose and structure is simpli-
fied [3, 11]. A most well-known approach using RGB-
D sensor is KinectFusion [10]. This work showed that
it is possible to obtain an accurate dense 3D model
of a medium sized room by merging depth maps, the
camera motion is estimated using an iterative clos-
est point algorithm (ICP). Chen et al. [13] showed
how KinectFusion can be extended for larger scenes
through a more memory efficient representation. Other
approaches called Dense Visual Odometry DVO [5],
estimate the inter-frame motion by minimizing the
dense photometric error between successive images us-
ing depth data. The approaches cited above can pro-
vide an accurate 3D geometry of the scene, but are
computationally expensive, and often require modern
powerful GPU processor to work in real time. Henry
et al. [3], presented a near real time feature based
approach using RGB-D camera, where features ex-
tracted from the RGB images are used for the initial
camera pose estimation which is then refined by ap-
plying an (ICP) on the depth data (RGB-D mapping
combines a sparse feature mapping system with dense
RGB-D frame-to-frame alignement), the dense depth
data is howver not fused into a full model in real time
but through an off-line surfel recontruction step, the
sustem has limited dense raconstruction quality but
is capable of large scale drift free mapping). Another
approach proposed by Endres et al. [1] who also uses
matched visual features and their depth to initialise

1http://vision.in.tum.de/data/datasets/rgbd-dataset
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an ICP RANSAC. To compute globally optimal poses
for the sensor positions, they use a graph-based opti-
mization routine. Similar to the work of [3]. Huang et
al. proposed a visual odometry method which is called
FOVIS [4], that can run in near-real time on a sin-
gle CPU. The methods previously cited exploit only
points with provided depth data. Unfortunately the
used RGB-D camera has a limited range and thus prob-
lems with direct or indirect sunlight, depth discontinu-
ities and reflective or highly absorptive surfaces occur.
This means that depth measurements are generally not
available for the full camera image. To overcome this
limitation, some methods [11, 12, 15] propose to ex-
ploit both visual information and depth information.
Scherer and al. [11] have recently proposed an exten-

sion of PTAM algorithm [6] to take into account depth
data. They proposed several simple modifications of
the PTAM, the main change concerns the BA. They ex-
tended the BA optimization of PTAM by adding depth
error in the cost function. Their proposed cost func-
tion combines the conventional 2D re-projection error
with the depth error. To be combined, these errors
of two different dimensions (one in pixels and the sec-
ond in meters), need to be scaled according to their
expected uncertainties which rely on an experimental
estimated scaling parameter a. As mentioned by the
authors, a need to be changed to a higher value for
complex scenario like fast movements. The same au-
thors has recently proposed in a second paper [12], an
extension of their previous work. Indeed, one of limi-
tation of PTAM is the runtime complexity of its global
BA when the map grows. To overcome this limita-
tion, they proposed in [12] to replace the global BA
by a pose graph optimization where the cost function
combining depth and visual information is still used to
refine the edge of the graph, i.e. the relative pose of a
pair of keyframes.

Contribution Our method is an extension of
the visual monocular keyframe SLAM. The main dif-
ferences with the approach of Scherer et al. [11, 12] lie
in:

• The optimization process: A temporal local BA in
our case and a relative graph optimization in the
case of [12].

• The cost function of the BA: Totally expressed in
pixel in our case and a combination of two different
dimension errors in the case of [11, 12].

The performance of this new approach is evaluated
on the recently published benchmark dataset1 and
compared to state of the art methods: FOVIS [4], ap-
proach cited in [12], [11] revisited. Our approach is
illustrated in Figure. 1. It consists in using in real-
time and incrementally, conventional computer vision
tools (matching, pose computation, triangulation and
bundle adjustment). The modifications we made to
this visual SLAM [9] are presented in dark.
Features extracted from the current frame are matched
with the corresponding reconstructed features from the
previous frame to obtain 2D-3D associations. Using
these matched features, the current camera pose is
computed using the Grunert’s pose estimation algo-
rithm [7] in a RANSAC process. While the camera
poses are estimated for all the images, adding new fea-
tures to the map is performed only for keyframes. For
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Figure 1: overview of our approach

each detected feature, we can obtain its corresponding
3D point by using the depth provided by the RGBD
sensor. Unfortunately for some features, the depth
measurements are not available. In this case, we apply
a triangulation. The camera poses and the 3D features
are then simultaneously refined with a BA. To achieve
real time performance we use a local BA that optimizes
sequentially only a limited number of camera poses and
the observed 3D points. The most important modifi-
cation is in the integration of depth in the BA, which
is described in the next section.

3 Using Depth in BA Process
We propose here a new cost function in BA, which

allows to easily combine both depth and visual infor-
mation without using an additional weight factor as in
[11, 12].

Notation We use the basic pinhole camera model
to describe the projection of 3D points onto a 2D im-
age plane. We denote by P , the transformation matrix
performing world coordinates into camera frame coor-
dinates.

P =

[
R t

01×3 1

]
(1)

Let Q = (X,Y, Z, 1)T be the homogeneous 3D point
with respect to world frame and q = (x, y, z)T the
2D homogeneous point with respect to camera’s frame
such that q = KPQ. K describes the intrinsic param-
eters of the camera:

K =

[
fu 0 u0

0 fv v0
0 0 1

]
(2)

with focal lengths fu, fv and the coordinates of the
camera center u0, v0. Further, π(q) = (x/z, y/z)T is
the perspective projection of q. The 3D point with
respect to camera’s frame is defined by Q = dK−1q.
Here d is the depth of point Q, provided by the RGBD
camera.

Bundle Adjustment Local bundle adjustment
optimizes the camera poses and the 3D points by min-
imizing the 2D re-projection error in the N latest
keyframes. This error is the difference between the
estimated projection of point Qi through the cam-
era Pj , and it’s corresponding observation qi,j . To
achieve time-efficient performances, the local BA op-
timizes only the poses of the Nc latest cameras and
the Np 3D points observed in the N latest images with
N � Nc. The cost function is defined as :

εslam

(
{Pj}Nc

j=0, {Qi}Np

i=0

)
=

Np∑
i=0

∑
j∈Ai

ρs

(
qi,j − π(KPjQi), as

)
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where Ai is the set of keyframes indices observing Qi,
ρs(., as): the Geman-McClure estimator, and as is the
rejection threshold estimated with the MAD median
absolute deviation.

Integrating Depth in Bundle Adjustment
In addition to the conventional 2D error mentioned
above, we integrate depth measurements as further
constraints into BA to improve accuracy and robust-
ness. In contrary to Scherer et al [11] who relies the
conventional 2D re-projection error with an additional
1D constraint for the depth re-projection error, we pro-
pose to combine depth and visual information in a cost
function totally expressed in pixel.
We compute the 3D position of each 2D feature in
the camera frame k, from its observation qi,k and its
available measured depth di,k. Then we transform it
in global coordinate using the Equation. 4.

π−1(qi,k, dk) = di,kK
−1qi,k (3)

Qi,k = P−1
k π−1(qi,k, di,k) (4)

We measure the 2D projection error of each 3D
point Qi,k in every frame that observes it, with (j ∈
Ai and j �= k).
The resulting cost function is given by:

εdepth

(
{Pj}Nc

j=0

)
=

Np∑
i=0

∑
j∈Ai

k �=j∑
k∈Ai

ρd

(
qi,j − π

(
KPjP

−1
k π−1(qi,k, di,k)

)
, ad

)
.

To handle outliers due to mismatched points or er-
roneous depths, optimisation is performed with a
Geman-McClure M-estimator ρd(., ad), with ad being
the rejection threshold estimated with the MAD me-
dian absolute deviation. The resulting cost function,
taking into account re-projection errors and depth con-
straints, is defined by :

ε
(
{Pj}Nc

j=0, {Qi}Np

i=0

)
= εdepth + εslam (5)

Equation 5 is minimized by the Levenberg-
Marquardt algorithm [8]. Note that the proposed BA
retains the sparse blocks structure of the matrices in-
volved in the optimization. Like in the classical BA, it
is thus possible to implement it effectively, taking into
account sparse structure blocks, as described in [14].

4 Evaluation and Experimental Results

We first evaluate our system on a long synthetic se-
quence (154m) representing corridors and offices. We
also implement the cost function proposed by [11] in
our SLAM framework using the scale factor recom-
mended by the authors (a = 3.331 10−3). This cost
function is illustrated in Figure. 2 .We call this method
DSLAM. The results, shown in Figure. 2. and Table.
1 demonstrate that integrating depth data in the vi-
sual SLAM reduces significantly its drift. Note that
our method DSLAM is different to [11] and [12]. In-
deed [11] uses a global BA causing a computational
time increasing when the map grows. DSLAM has not
this limitation since it uses a local BA. To overcome
the limitation of [11] the authors have proposed in [12]
a relative graph optimization instead of the global BA.
We will show that DSLAM is more accurate in com-
parison with [12].

Start

End

Figure 2: Estimated trajectories on a synthetic se-
quence.

Methods
Error [m]

RMSE STD

OURS 0.228 0.187
DSLAM 0.209 0.192

VISUAL-SLAM 1,101 0.575

Table 1: Results on the long synthetic sequence

For a quantitative comparison of the performance
of our approach with the other state-of-the-art meth-
ods, we evaluate all approaches on the TUM RGB-D
benchmark1. The dataset contains both RGB images
and depth maps provided by theMicrosoft Kinect (V 1)
with time-synchronized ground truth poses obtained
from a high accuracy motion capture system. Our
method is compared to the visual SLAM [9], previ-
ously mentioned DSLAM , FOVIS [4] that is publicly
available 2, and to Scherer’s method employing results
published in [12]. We evaluate the accuracy of each
approach by comparing the estimated trajectory with
its ground truth using the absolute translation error
(ATE) provided by the tool included with the bench-
mark dataset.
The results presented in Figure. 3 and Table. 2

demonstrate that integrating depth data in BA of
SLAM process improves significantly the accuracy:
The ATE is reduced by a factor 10. Our solutions
outperforms FOVIS and Scherer’s method. However,
Ours yields a comparable performance in compari-
son to DSLAM. The difference between these two ap-
proaches is the cost function in the BA. In contrast
to DSLAM which requires a specific scaling factor ’a’
to combine tow different dimensional errors, our solu-
tion uses a cost function entirely expressed in pixel and
does not required specific scale. An important point
concerns the comparison between DSLAM and Scherer
[12] which both use the same cost function in the BA.
The difference between these two approaches relies on
the optimization process. Indeed, Scherer’s approach
in [12] is based on a graph optimization where BA is
performed only between two keyframes to refine the
poses of keyframe pairs corresponding to the edges in
the graph. Our method is based on a SLAM where
the BA is performed on a temporal sliding window of
N keyframes where the Nc latest poses are optimized
(N = 10 and Nc = 3). Therefore, in our case, BA
optimizes simultaneously map points and 3 poses com-
pared to 2 in the case of Scherer, using the 2D projec-
tion error in 10 frames compared to 2 in the case of
Scherer. This main difference seems demonstrate that

2https://code.google.com/p/fovis
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Figure 3: Estimated trajectories on the freiburg3-long-
office-household sequence.

BA in N images compared to BA only in the edges of
the graph, helps keeping the map consistent and may
explain the better results obtained with our framework.

Methods
Error [m]

RMSE STD

OURS 0.068 0.039
DSLAM 0.069 0.052

Scherer in[12] 0.136 -
FOVIS 0.207 0.117

VISUAL-SLAM 0.652 0.204

Table 2: Comparaison of ATE on the Freiburg3-long-
office-household sequence.

On the Freiburg3 sequence, we also evaluate the
computational performances of our system on a se-
quential single-threaded using 1 core from an Intel
Xeon W3570 at 3.20 GHz. We measured that the
mean run-time required for process each frame is about
25 ms (The inter-frame pose estimation requires an av-
erage of 20 ms and BA 38 ms).

5 Conclusion and Further Work

This paper presents a technique to integrate depth
measurements into an existing monocular visual SLAM
system. The main idea is to use sparse depth informa-
tion as additional constraints in bundle adjustment. A
similar idea has been investigated by [11] who revis-
ited the PTAM algorithm. In this paper, we augment
a visual SLAM with temporal local BA and present a
new cost function which allows combining depth and
visual information without using the additional factor
as needed by [11]. The proposed method is evaluated
on a public benchmark dataset and compared to the
recent state of art methods, as well as the method of
[11, 12]. This evaluation shows that using depth in-
formation reduces the scale drift and improves the ac-
curacy of a visual SLAM. The proposed cost function
allows to keep the sparse structure of the matrices in-
volved in the BA and allows to obtain convincing pro-
cessing times of 25ms.

Our future work will concern tests on more se-
quences and make our SLAM more robust to the
texture-less environments. Note also that the proposed
solution is not limited to RGBD cameras and can be
used with other sensors like a laser scan coupled with
a camera.
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