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Abstract

Medical image segmentation, e.g., Computed To-
mography (CT) volume segmentation, is necessary for
further medical image analysis and computer aided
intervention. In the standard energy minimization
scheme for medical image segmentation, three terms
exist in the energy: the data term, the Potts smoothing
term, and the probabilistic atlas term. In this paper, we
propose a novel potential function that extends the data
term. The discriminability of the existing data term,
which fully depends on how distinctive the objects of
interest appear on CT volume, has problem when some
of the objects have similar or same CT values. We
overcome this limitation by considering the CT values
of a pair of neighboring voxels. Increasing the voxel of
interest to be evaluated, the data term become more dis-
criminable even if some objects of interest have similar
CT values. We also propose to learn the probability of
the neighboring data term for each sub-region, not for
each voxel. The proposed neighboring data term can be
regarded as to combine the standard data term and the
probabilistic atlas.

1 Introduction

Medical image segmentation, e.g ., Computed To-
mography (CT) volume segmentation, is necessary for
further medical image analysis and computer aided
intervention. In the standard energy minimization
scheme for medical image segmentation, three terms
exist in the energy: the data term, the Potts smoothing
term, and the probabilistic atlas term. In this paper,
we propose a novel potential function that extends the
data term. The discriminability of the existing data
term, which fully depends on how distinctive the ob-
jects of interest appear on CT volume, has problem
when some of the objects have similar or same CT val-
ues. We overcome this limitation by considering the
CT values of a pair of neighboring voxels. Increasing
the voxel of interest to be evaluated, the data term
become more discriminable even if some objects of in-
terest have similar CT values. We also propose to learn
the probability of the neighboring data term for each
sub-region, not for each voxel. The proposed neigh-
boring data term can be regarded as to combine the
standard data term and the probabilistic atlas.

(a) The standard data term

Frequency

(b) The neighboring data term

Figure 1. Our contribution. (Top) The standard
data term. (Bottom) The proposed neighboring
data term.

CT volume is a set of tomographic images observed
using X-ray and is used to generate a 3D image of inter-
nal objects. Since different objects blocks X-ray beam
differently, their CT values are observed differently. A
CT volume consists a set of voxels V and each voxel
v ∈ V has its CT value Iv.
The task of CT volume segmentation is to decom-

pose an input CT volume into a set of meaningful ob-
jects, e.g ., internal organs. It can be treated as a label-
ing problem in which a label representing an internal
organ is assigned to each voxel. Let L be the set of
target objects1; then the CT volume segmentationL
assigns a label l = Lv ∈ L to each voxel v ∈ V.

The problem of choosing the optimal labeling can
be formulated as an energy minimization problem. We
define an energy function as follows:

E(L) = wdEd (L) + wsEs (L) + waEa (L) , (1)

1Note that L contains a label indicating background objects

that is objects of non-interest. L = 2 for single object segmen-

tation and L > 2 for multiple-object segmentation.
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where each term evaluates the labeling L considering
different properties of CT volumes and the weights
wd, ws, and wa keep the balance between their con-
tributions. The potentials are defined as

Ed(L) = −
∑
v∈V

logP (Lv|Iv), (2)

Es(L) = −
∑

(u,v)∈E
logP (Lu, Lv), (3)

Ea(L) = −
∑
v∈V

logP (Lv), (4)

where E denotes a set of neighboring voxels. The first
term Ed is called data term that computes the proba-
bility of a label Lv given the CT value Iv for a voxel
of interest v ∈ V. In other words, the data term evalu-
ates the likelihood of the organ Lv w.r.t. its CT value
Iv. The second term Es is called smoothness term that
imposes an assumption that a pair of neighboring vox-
els (u, v) ∈ E tends to have same label. Following the
Potts energy [1], its probability is defined as

P (Lu, Lv) =

⎧⎨
⎩
0 if Lu = Lv

1

|Iu − Iv|+ ε
otherwise

, (5)

where ε is an arbitrarily small quantity for avoiding
zero division. The probability is inversely proportional
to the CT value difference when the voxels are assigned
different labels. The third term Ed is called probabilis-
tic atlas term [2] that computes the probability of a
label Lv given its position.
There exist several algorithms to minimize Eq. 1

such as Graph Cut [3, 4]. State-of-the-arts used Graph
Cut algorithm for either single or multi-organ segmen-
tation [5, 6, 7, 8]

1.1 Our contribution

This paper proposes a novel potential function that
extends the existing data term Eq. 2. The discrim-
inability of the existing data term fully depends on
how distinctive the objects of interest appear on CT
volume. When the objects have clearer difference on
their CT values, the data term well-distinguish the ob-
jects as expected. The term behaves worse when some
of the objects have similar or same CT values. We
overcome this limitation by considering the CT val-
ues of a pair of neighboring voxels (Iu, Iv). Increasing
the voxel of interest to be evaluated, the data term
become more discriminable even if some objects of in-
terest have similar CT values. Figure 1 shows a con-
ceptual sketch comparing the data terms. In Fig. 1,
we have one distinctive object Lv = 1 and two objects,
Lv = 2, 3, whose CT values are similar. The stan-
dard data term Eq. 2 returns higher probability when
Iv = I1 but lower probability is returned when Iv = I2
because the objects of label values 2 and 3 have sim-
ilar CT volume. Hence the probabilities become like
P (2|I2) ≈ P (3|I2). On the other hand, the proposed
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Figure 2. JI w.r.t. the weight w. The standard
data term (blue filled), the proposed neighboring
data term with N=1 (red diagonal lines), N=15
(green horizontal lines), and N=20 (magenta ver-
tical lines).

neighboring data term evaluates a pair of neighbor-
ing voxels (Iu, Iv). The neighboring data term com-
putes the joint probability of the CT values (Iu, Iv) and
therefore the proposed term can distinguish the objects
of similar CT values as P (1, 2|Iu, Iv) � P (1, 3|Iu, Iv)
as shown in Fig. 1 (b).
We also propose to learn the probability of the neigh-

boring data term for each sub-region not for each voxel.
The proposed neighboring data term is regarded to
combine the standard data term and the probabilistic
atlas. It means that the probability is trained for each
voxel, however voxel based learning has some draw-
back. To compensate the drawback, we divide a CT
volume into a set of sub-regions and then train the
probability for each sub-region.

2 The Method

This section describes the proposed neighboring data
term that extends the standard data term Eq. 2.
The proposed neighboring data term computes the

probability of the labels (Lu, Lv) for each pair of neigh-
boring voxels (u, v) ∈ E given their CT values (Iu, Iv).
The potential function is formulated as

En(L) = −
∑

(u,v)∈E
logP (Lu, Lv|Iu, Iv). (6)

It requires a lot of training data to learn Eq. 6 because
the probability is conditioned by the CT values, which
has much more variety than labels do. To learn the
probability with less number of data, we redefine the
term following Bayes theorem as

P (Lu, Lv|Iu, Iv) = P (Iu, Iv|Lu, Lv)P (Lu, Lv)

P (Iu, Iv)
(7)

=
P (Iu, Iv|Lu, Lv)P (Lu|Lv)P (Lv)

P (Iu, Iv)
. (8)

With this definition, we can train the term with less
number of training data.
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Table 1. Mean value of JI for the case of w = 10−2. The abbreviations denote organs: RL(right lung), LL(left
lung), H(heart), A(aorta), E(esophagus), EL(esophageal lumen), L(liver), G(gallbladder), St(stomach),
SL(stomach lumen), SC(stomach contents), Sp(spleen), RK(right kidney), LK(left kidney), I(inferior vena
cava), PV(portal vein), Pa(pancreas), B(bladder), W(womb), and BG(background)

RL LL H A E EL L G St SL
standard 0.92 0.92 0.68 0.44 0.00 0.07 0.82 0.04 0.34 0.05
N=1 0.91 0.89 0.70 0.47 0.00 0.00 0.78 0.05 0.29 0.05
N=15 0.93 0.92 0.70 0.47 0.00 0.00 0.82 0.07 0.32 0.05
N=20 0.93 0.92 0.70 0.46 0.00 0.00 0.81 0.04 0.31 0.05

SC Sp RK LK I PV Pa B W Total

standard 0.17 0.67 0.54 0.55 0.10 0.01 0.03 0.42 0.88 7.65
N=1 0.17 0.55 0.52 0.58 0.22 0.05 0.19 0.42 0.88 7.71
N=15 0.25 0.67 0.58 0.64 0.16 0.03 0.15 0.42 0.88 8.06
N=20 0.25 0.66 0.57 0.65 0.17 0.01 0.10 0.42 0.88 7.92

We learn the probability Eq. 8 for each sub-region
not for each voxel. As Eq. 8 shows, the poten-
tial is regarded as a combination of the prior prob-
ability P (Iu, Iv|Lu, Lv) and the probabilistic atlas
P (Lu|Lv)P (Lv) and therefore is expected to be trained
for each voxel. It requires more data to learn the prob-
ability for each voxel. To compensate this drawback,
we divide a CT volume into a set of sub-regions R and
learn the probability for each sub-region r ∈ R as

Pr(Lu, Lv|Iu, Iv) = Pr(Iu, Iv|Lu, Lv)Pr(Lu|Lv)Pr(Lv)

Pr(Iu, Iv)
,

(9)

≈ P (Iu, Iv|Lu, Lv)Pr(Lu|Lv)P (Lv)

Pr(Iu, Iv)
,

(10)

where Pr denotes the probability learned for a sub-
region r. The approximation from Eq. 9 to Eq. 10 is de-
rived from the following issues. First, we assume that
the CT values conditioned by the label values is con-
stant even in different sub-regions. Second, the prob-
abilistic atlas P (Lv) must be learned for each voxel.
Otherwise, the trained probabilistic atlas always pre-
fer to assign background label.
Note that the size of sub-regions may affect the seg-

mentation result and the effect is analyzed in Sec. 3.
Energy minimization

The energy function is formulated as

E(L) = wnrEnr (L) + wsEs (L) , (11)

Enr(L) = −
∑

(u,v)∈E
logPr(Lu, Lv|Iu, Iv). (12)

The proposed method finds a labeling L̂ by minimizing
Eq. 11 using Graph cut [4].

3 Experiments

This section validates the proposed method using a
set of real CT volumes.
Dataset: For the experiment, 24 CT volumes are

used. The size of the volumes is 512 × 512 pixels, the

number of their slices vary from 263 to 538, and the
pixel space ranges 0.546 ∼ 0.820 mm. The ground
truth for each CT volume was manually generated us-
ing a semi-automatic method based on region growing
and graph cut method and then a slice-by-slice cor-
rection was performed manually by an expert rater.
All the CT volumes and their ground truth segmenta-
tion are rigidly registered by a simple rigid registration
method and the size is set to 209 × 158 × 258 voxels.
The total number of organs is 20 including objects of
non-interest as background.
Comparison: We compare the proposed neighbor-

ing data term Eq. 11 with the standard data term
Eq. 1. As mentioned above, we tested three sub-region
sizes, {1 × 1 × 1, 15 × 15 × 15, 20 × 20 × 20}, denoted
N=1, N=15, and N=20 respectively. Note that N=1
case means that the learning is executed for each voxel,
which is equivalent to sub-region of size 1 × 1 × 1.
Since both energy functions Eq. 11 and Eq. 1 share
the smoothness term Es, ws is set to 1 and the other
weights are varied as follows. For fair comparison,
weights wd and wa in Eq. 1 and wnd in Eq. 11 are
set to same value and are exponentially proportional
to ws from 10−3 to 102.
Evaluation criteria: The segmentation perfor-

mance was evaluated using the Jaccard index J ∈ [0, 1],

J =
XGT ∩ X̂

XGT ∪ X̂
, (13)

where XGT denotes the ground truth and X̂ the seg-
mentation result. Larger Jaccard index (JI) means bet-
ter segmentation result.

3.1 Results

Leave-one-out cross validation was performed for
each test and we evaluate the results based on the mean
value of the JI.
Results w.r.t. each weight setting

Figure 2 compares the mean value of the JI w.r.t. each
weight value wd, wa, and wnd. Bars filled blue rep-
resent JI of the standard data term and bars with
colored lines represent the proposed neighboring data
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Figure 3. Segmentation results w.r.t. each organ. JI value is written in the parentheses. In the label maps,
a color is assigned to each organ: right lung (blue), left lung (lime), heart (red), aorta (yellow), esophagus
(cyan), esophageal lumen (magenta), liver (coral), gallbladder (deep pink), stomach (green), stomach lumen
(navy), stomach contents (maroon), spleen (orange), right kidney (purple), left kidney (sienna), inferior vena
cava (chocolate), portal vein (silver), pancreas (brown), bladder (pink), womb (teal), and background (black).

term: N=1 (red diagonal lines), N=15 (green horizon-
tal lines), and N=20 (magenta vertical lines). All cases
are at the peak in terms of JI at w = 10−2 or w = 10−1

and converge around w = 100. The proposed neighbor-
ing data term overcomes the standard data term except
N=1 case at w = 10−1. The result indicates that the
proposed neighboring data term works better than the
standard data term with sub-region based learning.
Figure 3 compares label maps, which visualize seg-

mentation, of different CT volumes. In the segmenta-
tion maps, a color is assigned to each organ. Fig. 3 (a)
shows the result of w = 10−2 case. The proposed
neighboring data term improved heart and left kid-
ney segmentation. Heart segmented by the standard
data term violated into right lung while the proposed
data term could avoid such wrong segmentation. The
proposed neighboring data term, especially N=15 and
N=20 cases, could segment the left kidney better than
the standard method. Fig. 3 (b) shows the result of
w = 10−3 case. The standard data term mis-segment
aorta as heart while the proposed data term could seg-
ment aorta correctly.
Results w.r.t. each organ

Table 1 compares the mean value of the JI for the case
w = 10−2. As shown in the table, the proposed neigh-
boring data term achieves better JI comparing to the
standard data term.

4 Conclusion

In this paper, we aim at improving the standard data
term used in medical image segmentation, especially
its discriminability. We propose neighboring data term
that considers the CT values of a pair of neighboring
voxels. By increasing the voxel of interest to be evalu-
ated, we make the data term more discriminable even
if some objects of interest have similar CT values. We
also propose to learn the probability of the neighbor-

ing data term for each sub-region. We validate the
neighboring data term by comparing to the standard
data term using a set of CT volumes of different per-
sons. As the experimental results show, the proposed
neighboring data term outperform the standard one.
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