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Abstract 

As the first and important step of modeling to explore 
biomechanical dynamics of the human body, the regions 
of interest, such as muscles, bones, nerves, and etc., 
should be extracted from slices of MRI or CT data. Fast 
and automatic region segmentation would speed up an 
online process of building physically based models. In 
this work, a new automatic segmentation model was 
proposed that utilizes both saliency-on and saliency-off 
features with simple morphological operations and bi-
nary fuzzy decision based fusion. The new model was 
tested on a dataset of 160 images including two different 
T1 and one T2 thigh parts. 3D models of the thigh parts 
were successfully generated with a high segmentation 
performance, achieving over 90% F-measure values 
based on 2D comparison and low RMS values of 
Hausdorff distance based on 3D volumetric comparison. 
That is adequate for 3D model research since smoothing 
on manual or automatic segmented images is also ap-
plied during 3D construction of the thigh muscle 
structure. Experimental results showed the possibility of 
providing automatic muscle segmentation using saliency 
features for modeling 3D human musculoskeletal system. 

1. Introduction 

Models of human musculoskeletal system with 3D 
representation of anatomical details could be used to 
explore biomechanical dynamics of the human body. For 
this reason, researchers take advantage of medical imag-
es such as MRI and CT to obtain the region of interest to 
create 3D anatomically based models [1-5]. However, 
sequential slices are required to build and simulate a 3D 
model [4, 5]. In addition, datasets from several subjects 
have to be processed for 3D modeling to be able to make 
an analysis on different subjects. Therefore, there is an 
emerging demand on automatic segmentation models for 
the region of interest to provide time efficiency with ac-
ceptable accuracy for the research task [6-11].  

Currently, we have been working on the 3D muscle 
modeling based on the thigh muscle MRI datasets where 
2D segmented set of muscle images are required to be 
able to achieve this goal [4-6]. And, thigh muscles are 
modeled as one combined structure regardless of indi-
vidual characteristics of each muscle. Therefore, an 
estimation that could differentiate muscles, bones and fats 
is enough to create the model in our application. 

Regarding our current research needs, and high 
amount of data requirement of supervised models [8, 10], 

unsupervised methods [6, 7, 9] can be more practical if a 
faster model with acceptable accuracy is achieved. Thus, 
in [6], the usability of saliency information was demon-
strated on unsupervised thigh muscle segmentation, 
which is related to visual attention mechanism and can 
be separated into to two feature maps as saliency-on and 
saliency-off [12, 13, 6]. In the relevant work [6], salien-
cy-on features together with pulse-coupled neural 
network (PCNN) were employed to enhance a muscle 
likelihood map by giving promising results compared to 
existing state-of-art models [6-11] regarding both accu-
racy and computation time. However, its segmentation 
performance based on F-measure was good only on giv-
en T1 dataset. And, the robustness of the segmentation 
for 3D construction decreased for different MRI settings 
especially on T2 MRI data. So, parameter adjustment 
was needed depending on the machine and parameter 
settings to improve the performance. 

To handle the problems in the model [6], in this study, 
we have proposed a new unsupervised automatic thigh 
muscle segmentation method which employs both sali-
ency-on and saliency-off features with simple 
morphological operations and binary fuzzy decision 
based fusion. Using both saliency on and off features 
decreased the dependency on intensity by making the 
method more tolerable to change of data type. Experi-
ments with the proposed model were done for a dataset 
of 160 images including two different T1 and one T2 
thigh segments. 3D models of the thigh parts were suc-
cessfully generated with the segmentation performance 
with over 90% F-measure values based on 2D compari-
son and low RMS values of Hausdorff distance based on 
3D volumetric comparison, which is useful for 3D model 
research. Because 3D construction of the thigh muscle 
structure also includes smoothing on manually or auto-
matically segmented images. Experiments have yielded 
satisfactory segmentations compared to state-of-the-art 
models, which is also promising for future work in 3D 
muscle modeling research by providing fast automatic 
segmentation of muscles. 

2. Proposed Model for Muscle Extraction 

Proposed model can be separated to several 
sub-modules; i) region of thigh detection, ii) saliency 
module that calculates two types of feature map as sali-
ency-on and saliency-off, iii) integration of saliency 
features by Fuzzy decision module, iv) final enhance-
ment with non-muscle region removal. 
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2.1. Background removal 
Initially, foreground and background regions on MRI 

data should be separated so that only thigh region can be 
processed to increase the accuracy of the other modules. It 
is important to remove the background regions since the 
intensity value maybe similar with the some tissues on the 
region of interest and any irrelevant information on the 
background should be avoided. In this work, the fore-
ground region was obtained by the following 
morphological operations as in Table 1: 

Table 1. Pseudo code for background removal 

i. Detect edges using Laplacian of Gaussian (LoG) 
ii. Dilate the edges with a disk of size 3 

iii. Select the longest connected edge (as boundary of the thigh) 
iv. Fill the region of detected boundary 
v. FG = Erode the edges with a disk of size 6 

vi. Image = Image ∩ FG 

where Image is the gray scale thigh MRI data and FG, 
detected foreground region to be used to adjust other 
features too. The disk size of erode operation was selected 
bigger than the dilation to remove the possible skin re-
gions that have the similar intensity distribution with the 
muscle. 

2.2. Extraction of saliency features on MRI 
Saliency computational models aim to generate fea-

ture maps that bring out attentive regions, composed of 
edge to texture level contrasts, by removing the redun-
dant data on the image [12, 13]. Here, our concern is 
mostly on texture level saliency that would discriminate 
the regions on the thigh MRI images. Hence, as in [6], 
we also applied Wavelet transform (WT) based mul-
ti-scale saliency model [13] to obtain salient features. 

As stated in [12, 6], a gray scale image can give two 
types of saliency features such as saliency-on and sali-
ency–off information; therefore, local saliency method in 
[13] was adopted to give these two feature maps sepa-
rately instead of the combined case. First, WT should be 
applied to obtain various levels of decomposition that 
would reveal low-pass approximation data and high-pass 
details as below [13]: 
 

[ , , , ] NN s s s WTA H V D I  (1) 

 
where I is MRI in Fig.1(a) and normalized to {0-1}, WT(.) 
is the wavelet decomposition for scaling level s and s  
{1,…,N}, N is coarsest level of decomposition, A is the 
approximation signal of Nth level decomposition, and the 
horizontal, vertical and diagonal details, Hs, Vs, Ds, are 
gained respectively. 

The saliency-on and saliency-off features were gener-
ated from inverse-WT (IWT) of details for defined levels 
[6, 13] as in (2) and (3) respectively [6, 13]: 
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where SON (Fig.1 (b)) is the saliency-on map that repre-

sents generally non-muscle regions, FON(.) is the process 
considers the positive values of IWT operation to get SON, 
SOFF (Fig.1 (c)) is the saliency-off map that represents 
mostly regions on the muscle area, FOFF(.) is the process 
considers the negative values of IWT operation to get 
SOFF, and both SON and SOFF were adjusted with FG by 
neglecting values out of the foreground region and scaled 
to {0-1} range. 

Figure 1.  (a) MRI thigh image sample (b) saliency-on 
feature map (c) saliency-off feature map 

Even though, both feature maps seems to detect 
non-muscle and muscle regions respectively, obviously, 
both saliency feature maps consist of true and false de-
tections so combining these feature maps and applying 
morphological operations can be a fast solution to extract 
the muscle region roughly to satisfy input data for 3D 
construction. 

2.3. Extraction of saliency features on MRI 
The next step is to combine saliency on and off features 

to create a muscle region estimation. To be able to dis-
tinguish background from the darker area of the 
saliency-on map, the complement image of saliency-on 
feature was taken after normalization between {0-1}. 

Figure 2.  Fuzzy membership parameters and weights 
for integration 

Instead of linear combination, a rule based approach is 
applied that can provide non-linearity on decision process 
during fusion of two feature maps. This is achieved buy a 
simple binary Fuzzy decision operation where the mem-
ber function parameters and their respective fuzzy 
weights can be seen in Fig.2 [14, 15].  

In Fig.2, a to h are the membership parameters of the 
complement saliency-on membership functions μ, i to p 
are the membership parameters of the saliency-off 
membership functions β, and y is the fuzzy weights cor-
responding to the decision based on two membership 
functions’ relation. With the membership values, the 
output of the fuzzy decision module was given in Eq.(4) 
[14, 15]. And the membership functions of complement 
saliency are given through (5) to (7) [14]. The saliency-off 
membership values β can also be calculated with similar 
modalities since they are using similar functions with 
difference of parameter values as in Fig.2. The output R in 
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(4) is given in Fig.3(b) where it can be seen that the fuzzy 
output still includes some part of bone structure and some 
misdetections which can be handled by simple morpho-
logical operations as describe in next section. Using fuzzy 
based on saliency features, we simply created a rough 
estimation of the muscle region which requires en-
hancement to obtain muscle regions by removing the 
irrelevant parts such as bone or fat tissues. 

,min ,

; , 1,2,3
min ,

x y x y
x y

x y
x y

y

R x y  (4) 

1 max 0,min 1, onc S
c a

 (5) 

2 max 0,min min ,1 ,on onS b g S
d b g e

 (6) 

3 max 0,min 1, onS f
h f

 (7) 

2.4. Extraction of the muscle region 
Fuzzy saliency feature integration gives a rough esti-

mation of the muscle region that should be enhanced by 
removing the bone and fat components from the extracted 
rough muscle template. Using the procedure in Table 2, 
fuzzy output in Fig.3 (b) can be further enhanced to yield 
the final segmentation result given in Fig.3 (c) for the 
sample thigh MRI data in Fig.3(a). Then, 3D construction 
of the segmented images is done as in Fig.3(d), which can 
be used for model analysis after adjusting to decrease 
complexity as given in Fig.3(e) for simulation study. 

Figure 3.  (a) MRI thigh image sample (b) fuzzy binary 
output of saliency integration (c) final segmentation result 
(d) 3D construction of sequential data (e) Smoothed 3D 
data for model analysis 

Table 2. Pseudo code for muscle region extraction 

i. Extract possible bone regions based on intensity value and sali-
ency-off feature with respective thresholds 

ii. Find the structure with the biggest hole inside that is the bone part 
iii. Select the bone component and fill the hole 
iv. Find the possible fat regions from saliency-on with threshold 
v. Remove skeleton and fat region found from fuzzy binary output 

of (4) which will yield the final segmentation result 

3. Experimental results and discussion 

In this work, 30 T1, 30 T2 from [5] and 100 T1 MRI 
data from [6] were used to make experiments, in which 
all three data groups are sequential thigh parts. So, 3D 

muscle structure could be constructed by the segmenta-
tion results. Matlab® was used for segmentation with a 
processing time of approximately 10 seconds per image 
for 768x504 pixels, and the 3D model was reconstructed 
in ITK-Snap. For performance evaluation, manual seg-
mentation of each image was performed by the expert in 
the field, which constitutes ground truth (GT) images of 
the dataset. Firstly, GTs are compared with the segmen-
tation results of the proposed model quantitatively by 
applying F-measure metric that is the harmonic mean of 
precision and recall values [13, 6]. 

Several state-of-the-art models [6-11] with evaluation 
metrics and performances are given in Table 3. Unfortu-
nately, the algorithms or data were not available to test 
their model using data from [5, 6]; therefore, the results 
were taken from each references. However, the perfor-
mance of the proposed algorithm using salient features is 
still comparable to these studies. In Table 3, each refer-
ence can be defined as [6]: i) [7] is fuzzy C-means 
segmentation (FCMS), ii) [8] is surface expansion based 
segmentation (SES), iii) RMLS [9] is unsupervised re-
cursive and multilevel algorithm that considers shaped 
histograms, adaptive threshold and connectivity, iv) [10] 
is the shape prior knowledge based segmentation (SPKS), 
v) [11] is multi-scale human-MIRALab based on auto-
matic and quasi-automatic multi-resolution simplex 
meshes (MRSM), iv) saliency-on muscle segmentation 
(SOMS) is relevant model [6]. Supervised or qua-
si-automatic models SES [8], SPKS [10], and MRSM 
[11] may have better results compared to the remaining 
unsupervised approaches including the proposed model. 
However, it is very difficult to obtain huge amount of 
training data with defined tissue regions, and human in-
teraction can increase the segmentation time, especially 
on continuous slices to construct 3D model. On the other 
hand, our unsupervised model has promising result by 
having more than 0.92 F-measure from all three data, 
which is better than FCMS [7] and similar to SOMS [6]. 

Table 3. Quantitative Performance Other Models 

Compared  
Models 

Evaluation Quantitative 
Results 

Computation 
Time 

FCMS [7] Accuracy1 ≈0.91 NA 
SES [8] Accuracy1 ≈0.94 NA 
RMLS [9] CP-Rate2 over %90 ≈ 300 s/img 
SPKS [10]  DSC3 ≈0.95 NA 
MRSM [11] Distance 1.5 mm ≈ 12 s/img 
SOMS*[6] F-measure ≈0.92 ≈ 1 s/img 
Linear model* F-measure ≈0.91 ≈ 1 s/img 
Fuzzy Model* F-measure ≈0.92 ≈ 10 s/img 

*Tested using the dataset in this study, 1Accuracy: Recall, 2Coincidential 
pixels rate, 3DSC: Dice similarity coefficient 

Figure 4.  (a) T2 sample image (b) segmentation result 
of [6] (c) segmentation result of proposed model 

For the 30 T1, 30 T2 data [5], and 100 T1 data [6], 
F-measure values were observed as 0.9164, 0.9166, and 
0.9402 respectively where 100 T1 data had the best score 
due to its higher image quality. Comparing the relevant 
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work [6] with the proposed model, even though the 
model [6] is faster and overall results of [6] and proposed 
algorithm were very similar as being 0.92 average 
F-measure of all data, proposed model was better for the 
T2 images without any failure; on the other hand, work 
in [6] was not robust to T2 dataset in which it failed in 
some of the data that is hard to use in 3D modeling by 
requiring more manual processing time on the segmenta-
tion results (Fig.4). Also, we tried linear combination of 
two features instead of fuzzy. Linear approach yielded 
F-measure performances as 0.8861 on 30 T1, 0.9296 on 
30 T2, and 0.9229 on 100 T1 data. Despite being an av-
erage of 0.91, its F-measure performance deviations are 
too much and the segmented regions are not very con-
sistent, especially on 30 T1 data with 0.88 F-measure 
performance. On the other hand, fuzzy combination re-
sults are more consistent in all three datasets. 

Figure 5.  Hausdorff distance for (a) T1 data set and (b) 
T2 data set. The error is larger in the rectus femoris in T1 
and was diminished in T2. 

Also, 3D models constructed from manual and auto-
matic segmentations were compared using Hausdorff 
distance (two sided) between the vertices of the meshed 
models [16]. The better 3D model was for 100 T1 data, 
which has the lowest mean (1.69) and lowest RMS (3.11) 
Hausdorff distance values between the three data sets. In 
the case of the 30 T2 and 30 T1 data sets of [5], the mean 
values were 2.05 and 2.00, and RMS of 3.44 and 3.54, 
respectively. Fig.5 illustrates the locations were the error 
is higher (red) and lower (blue). These results showed 
that the proposed model can tolerate the differences for 
different MRI data. Especially, the F-measure results are 
better when the image resolution and quality is higher 
concerning the performance difference between 30 T1 
and 30 T2 data [5], and 100 T1 data [6] where 100 T1 
data of [6] has better quality compared to the data in [5]. 
In conclusion, unsupervised thigh muscle segmentation 
was achieved with a promising accuracy and acceptable 
computation time. 

4. Conclusion 

In this study, saliency-on and saliency-off feature in-
tegration was proposed based on a fuzzy decision rule to 
demonstrate the reliability of saliency information on 
unsupervised segmentation model. All the datasets have 
performance values over %90 that is satisfactory and 
beneficial to 3D anatomically based modelling. However, 
as a future work, there is still place for improvement such 
as decreasing resolution effect, increasing accuracy and 
data, or better bone and fat region detection algorithms. 
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