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Abstract

This paper presents a novel outlier removal method
which is capable of fitting ellipse in real-time under
high outlier rate, based on the phenomenon that out-
liers generated by ellipse edge point detector are likely
to appear as groups due to real-world nuisances, such
as under partial occlusion or illumination change. To
confront the grouped outliers while maintaining the fit-
ting efficiency, we introduce a proximity-based ‘split
and merge’ approach to cluster the edge points into sub-
sets, followed by a breath-first outlier removal process.
The experiment shows that our algorithm achieves high
performance under a wide range of inlier ratio and
noise level with various types of realistic nuisances.

1 Introduction

Ellipse fitting is one of the fundamental problems in
computer vision and robotic tasks. It is required as
preprocessing modules in many higher level applica-
tions such as textureless object recognition and shape
alignment. In this paper, we propose a real-time out-
lier removal solution for ellipse fitting which efficiently
deals with outliers especially when they are contami-
nated consistently.
Amongst ellipse fitting algorithms presented in the

last few decades, efforts have been made to approach
the KCR lower bound [1], i.e. the theoretical accu-
racy bound for ellipse fitting without outliers. In these
works, the presence of noises is considered from ob-
servational error only and thus the point-to-curve pro-
jection error is mostly assumed under Gaussian dis-
tribution. While in the real-world scenario, image or
extracted edgess is likely to be contaminated in a very
biased way such as under partial occlusion, specular
highlight, deformation or shading. In such cases, ro-
bust fitting algorithm like random sample consensus
(RANSAC) [4] is generally applied to eliminate out-
liers.
When the inlier rate ε is low, RANSAC soon be-

comes infeasible for many applications since the possi-
bility of finding at least one correct ellipse model after
K iterations p = 1 − (1 − ε5)K decreases drastically.
Also, the model candidates generated from minimal
sample sets can be greatly affected by the noise, which
leads to suboptimal solutions.
A recent work [10] proposed a proximity-based out-

lier detection algorithm to effectively remove the iso-
lated outliers and outlier clusters by constructing a
proximity graph. However, the adjacency matrix is
expensive to compute if data point set is large and
some parameters need to be tuned carefully in or-
der to achieve a good clustering result. Also, the
proximity-based method fails if the outliers are con-
nected smoothly with the inliers, as shown in Figure 1,

Figure 1. A challenging case for proximity-based
outlier removal method. Type (a) outliers cannot
be filtered by simple proximity (e.g. k-Nearest
Neighbour) check. Type (b) is even more difficult
since they are connected with the inlier contour.

type (b). Another work [8] presents an accurate, non-
iterative method based on the geometric distance be-
tween a data point and an ellipse. However it does not
take the type (b) outlier into account as well.
In this work, we demonstrate how edge points can

be effectively grouped into short contours to reduce the
computational cost, and further show how to eliminate
the outlier contours in a breath-first manner. Our con-
tribution is four-fold. First we introduce a split-and-
merge trick to cluster data points into subsets which
are likely to contain either only inliers or only outliers.
Second we propose a breath-first strategy for search-
ing the outlier contours through the combination of
subsets. Third, we speed up the searching process by
using the smallest generalised eigenvalue (which is a
by-product of algebraic fitting algorithm) to approxi-
mate the point-to-curve projection, and then use the
algebraic fitting solution as initial guess for geometric
fitting algorithm to alleviate measurement noises. Fi-
nally, we proposed a synthetic dataset for evaluation.

2 Preliminaries and Related Works

Given a point set, the objective of ellipse fitting
is to find a geometric parameter set that minimises
the sum of inlier-points-to-ellipse-curve projection dis-
tance. In this section, we briefly introduce two broad
algorithm categories: algebraic (Least-Square-based)
and geometric (Maximum-Likelihood-based) method.

2.1 Algebraic Fitting

Any ellipse can be represented by a second order
polynomial F (u,x) = u · x = ax2 + bxy + cy2 + dx +
ey + f = 0, subject to b2 < 2ac. Our goal here is
to estimate the parameter set u = [a, b, c, d, e, f ] from
a given point set xi = [xi, yi] such that the sum of

algebraic distance
N∑
i=1

|F (u,xi)|2 is minimised.

This problem is generally tackled with linear least
square solvers as in several seminal approaches [9, 5, 6].
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In this work, since we focus on outlier elimination,
Taubin’s method [9] is chosen as our algebraic ellipse
fitting algorithm. From our empirical experiments, we
believe that Taubin’s method is still one of the most ac-
curate and robust methods giving its efficiency, despite
it has been proposed for decades. Since this method
is designed for general conic fitting, it might return
conics other than ellipse as well (e.g. hyperbola curve)
and hence leads to incorrect fitting result.

2.2 Geometric Fitting

Geometric parameters of ellipse is of 4 elements: cen-
ter position, length of major axis, minor axis and angle
of tilt. Unlike algebraic methods, the linear condition
has no longer held for solving the least square prob-
lem with geometric parameters. Instead, iterative op-
timisation methods are used to find the local optimal
solution given an initial guess.
Geometric fitting, i.e. Maximum-Likelihood-based

method (ML) is generally regarded as one of the most
precise fitting algorithms. They do not suffer from
scale indeterminacy as in the algebraic methods and
are likely to achieve the local optimal solution. A de-
tailed analysis is given in the work [6].
The main drawback of geometric fitting algorithms

is their high computational cost due to iterative op-
timisation process. With existence of outliers or high
measurement noise, they also tend to fail to converge.
The initial guess is crucial as well to achieve the global
optimal solution.
In this work, we apply ML as the final refinement

to alleviate the measurement noise while keeping the
pipeline fast by using a near-optimal algebraic solution
as its initial guess.

2.3 Edge Point Detector

In this work, the edge points are collected circularly
around a user-estimated center point by finding the
maximal gradient change along each circle radius such
that the order of the point sequence is naturally known.
The center point does not necessarily need to be accu-
rate. This setting is common in many industrial ap-
plications like shape alignment, as it provides several
merits over the ordinary edge detector.

3 Proposed Approach

The proposed method consists of three stages:

• Clustering data points based on proximity so that
each subset is likely to contain only inliers or out-
liers edge points.

• Searching through combinations of subsets to min-
imise algebraic fitting distance until convergence.

• Refining the algebraic solution by the geometric
fitting algorithm.

3.1 Proximity-based Point Clustering

Generally a partial or full adjacent matrix needs to
be calculated to determine the connections between
edge points. This process roughly has computational
complexity O(N2) respect to the number of data points

and a adequate connection radius is also needed to be
carefully chosen. The edge point detector we used in
this work naturally provides the connectivity between
the points, which greatly simplifies the clustering pro-
cess.

Algorithm 1: Proximity-based Point Clustering

Input: Cfull = {xi}Ni=1
Initialisation: t, τ,D,C1 = {};
for i← 1 to N do

Ck = Ck ∪ xi;
di = |xi − xi+1|2 ; /* i+ 1 = 1 if i = N */

if di > t ∗median
i
{di} then

k = k + 1; Ck = {};
end

end
Delete any set Ck that has cardinality |Ck| < τ
for k ← 1 to K do

if |Ck| > 2N
D

then

Uniformly split Ck into � |Ck|
r
� sets;

Replace Ck by these sets;
end

else if |Ck|+ |Ck+1| < N
D

then
Ck = Ck ∪ Ck+1 ; /* Delete set Ck+1 */

end

end

return {Ck}Kk=1

The point set is ordered by the edge point detector
such that xn and xn+1 are next to each other. A point
set is split at a point that Euclidean distance to its
neighbour points di greater than t∗median

i
{di}, where

t is the distance ratio threshold. If the measurement
noise is too high, t should be set to a larger number
to prevent over-segmentation. In this step, subset is
discarded as isolated outliers if it contains less than τ
points.
To deal with type (b) outliers in Figure 1, each sub-

set is uniformly split if they contain more than a cer-
tain number of points. This number is determined by
a pre-defined expected subset cardinality D. Larger D
allows a finer segmentation of edge points, but induces
higher risk of getting stuck in local optimum after the
later searching stage, and also sacrifices the processing
speed.
In the last step, neighbouring subsets are merged if

their sum of cardinality is sufficiently small. In the
end, the whole point set should be split into similar
sizes and each subset is likely to contain only inliers or
outliers. The pseudo code of this section is shown in
the Algorithm 1.

3.2 Breath-First Searching

As shown in Figure 2, the fitting trials are per-
formed between the combinations of subsets only.
The total number of possible combinations {C}Dn=1 is
D∑

n=0

D!
n!(D−n)! , which could be still large in number.

For each test, Taubin’s fitting method [9] is used
to sidestep the expensive geometric projection. We
further speed up the process by approximating alge-
braic distance with the smallest generalised eigenvalue
λ from solving the linear least square system.
The algebraic distance between an ellipse u and a
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Figure 2. This figure shows an example that the value of the smallest generalised eigenvalue λ decreasing
drastically after excluding the outlier subsets. The point set contains two ‘outlier‘ subsets, (a), (b) and (c)
show three cases during the iteration, while (a) does not exclude any outlier subset, (b) excludes one of them
and (c) excludes all.

point set C is:

F (u, C) =
∑
x∈C

|u · Z(x)|2, Z(x) = [x2, xy, y2, x, y, 1].

We define our energy function to approximate the al-
gebraic distance by the minimal generalised eigenvalue
solved as follows:

E(C) = min(λ), subject to Mv = λNv

where M =
1

N

N∑
n=1

Z(xT − x̄T )Z(x− x̄)

N = 4
|C|

∑|C|
n=1

⎛
⎜⎜⎜⎜⎜⎝

x2
n xnyn 0 f0xn 0 0

xnyn x2
n + y2n xnyn f0yn f0xn 0

0 xnyn y2n 0 f0yn 0
f0xn f0yn 0 f2

0 0 0
0 f0xn f0yn 0 f2

0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

Here we propose a searching scheme that efficiently
search and exclude the outlier subsets in a breath-first
manner. To minimise the energy while maximising
the number of possible inliers, the combination of sets
are tested by excluding one subset in each iteration.
The searching process converges if excluding any sub-
set does not reduce the energy up to certain rate σ. To
prevent local optimal solution, number of S candidate
sets with lowest energy are stored at each iteration,
and each will be appended with another S candidates
in the next iteration. In case there are much more
outliers than average subset size so that removing any
subset does not reduce the energy, we introduce an er-
ror threshold η as another stop condition. The pseudo
code of this section is provided in Algorithm 2.

3.3 Refinement

Experimentally we found a refinement step to be cru-
cial to reducing the measurement noise from the edge
point detector. Given the inlier point set, we convert
the algebraic parameters u to geometric parameters H
and apply a nonlinear optimiser as below to further
minimise the point-to-curve (orthogonal to the ellipse
tangent) projection error. The detail for calculating
projection distance can be found in [3].

H∗ = argmin
H

||proj(H,C)||2
Since the initial geometric parameters are already es-

timated from the previous stages, they are close enough

Algorithm 2: Preemptive searching

Input: {Ck}Kk=1

Initialisation: S, σ, η, {Os = ∅}Ss=1;
for m← 1 to K do

Ctest =
⋃

k∈K,k �=m {Ck} ;
[λm,1,um,1] = TaubinF itting(Ctest);

end

Os = {m}, Es = λm for sth least λm;
for l← K − 2 to 1 do

for s← 1 to |{Os}| do
for m← 1 to K, m �∈ Os do

Ctest =
⋃

k∈K,k �=m {Ck} ;
[λm,s,um,s] = TaubinF itting(Ctest);

end

end
if (E1 > σ ∗min {λm,s})&(E1 < η) then

return uargmin
(m,s)

{λm,s}

end
else

S ← l if S > l;
for s← 1 to |{Os}| do

replace {Os} by {Os ∪ {m}} for S least λm,s;
end
update Es;

end

end

to the optimal solution. Thus the efficiency is main-
tained despite the algorithm itself is expensive because
it converges within few steps in most of cases.

4 Evaluation

Our method is evaluated by both synthetic1 and re-
alistic datasets which consists of ellipse edge points
with different types of contamination. For synthetic
data, we have rendered 3 videos (2 with occlusions and
1 with background clutter) with 3D computer graphic
software at 960 × 540 resolution. Each video contains
100 frames and each frame consists of 100 extracted
ellipse edge points. The ground truth ellipse centers
are fixed to the image center. To simulate the mea-
surement noise from camera, we augmented Gaussian
noise (σ = 3 pixels) to the data points. We use the
following parameter setting for our method in all ex-
periments: t = 2, τ = 5, D = 12, S = D/2, η = 5 and
σ = 1.05. The preliminary investigation suggests this
parameter set adapts a wide range of inlier rate and

1http://bit.ly/1Dvs0id
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Figure 3. Evaluation result of 3 methods on synthetic and realistic datasets (best view in color). The boxplot
reflects the statistic of center errors (capped at 20 pixel) from 100 runs of each method on every video frames.
The table on the top left corner shows the success rate (center error less than 5 pixels) of the methods on
each video. Note that for synthetic dataset, Gaussian noise is augmented to all data points in each run to
simulate the noise from realistic optical sensors.

outlier type.
We compare our method with Taubin’s method

with/without RANSAC and summarise the evaluation
result in Fig 3. In overall, our approach achieves supe-
rior accuracy than the baselines.
For Taubin’s method itself, almost all fitting esti-

mations are distorted by outliers due to the nature of
least square solvers, such as in the dataset ‘Occlusion 2’
shown in Fig 3. However, RANSAC does not boost the
accuracy significantly as expected as well. The main
reason is twofold. Firstly the parameters, e.g. inlier
ratio and distance threshold, are employed empirically
as stop criteria. Such settings are not optimal to all
situations therefore leading to an overall poor perfor-
mance. Another is due to the high measurement noise
within all data points. Since RANSAC picks hypothe-
ses from random minimal samples, the impact from
noises is drastically amplified comparing to estimating
from all inlier samples, which also explains the mo-
tivation of our method. There are several extended
RANSAC-like methods have been proposed to deal
with such a problem, they either are expensive (e.g.
pre-emptive RANSAC[7]) for ellipse fitting problem or
suffering from poor initial estimations generated from
minimal samples(e.g. locally optimised RANSAC[2]).
Our method achieves less than 20ms runtime on

single core CPU with up to 360 data points, which
meets the time requirement as a pre-processing mod-
ule for many higher level real-time applications. With
code optimisation and parallel processing, the whole
pipeline can be further speeded up.

5 Conclusion

This paper has presented a new approach for effi-
cient ellipses fitting under high outlier rate. We have
demonstrated how data points can be clustered based
on their proximity and how outliers can be filtered in
a ‘preemptive’ manner. Our method has shown to be
especially effective on the ‘grouped’ outliers due to en-
vironmental nuisances such as partial occlusion, spec-
ular highlight, deformation or shading. The runtime
of the method is below 20ms for up to 360 data points,

which is sufficient to achieve real-time processing speed
for many higher level applications. Finally, we believe
that our approach extends naturally to general conic
and ellipsoid fitting.
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