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Abstract

In this paper, we propose a method for pose es-
timation of multiple (textureless) objects of the same
type in heavily cluttered environments. The method as
such could be used as a component for building more
flexible automated visual inspection systems, removing
the need for precise mechanical manipulation and en-
able inspection in settings previously thought unfeasi-
ble. The method consists of three phases. In the first
phase, template matching is used to calculate similar-
ity measure maps for different object poses. Template
matching combines both edge and surface normal infor-
mation to improve the pose estimation accuracy. Sec-
ond, a large number of pose hypotheses are generated
with a non-parametric clustering of the similarity mea-
sure maps and finally, the best hypotheses are itera-
tively selected. Method was evaluated and compared
with the current state-of-the-art on two synthetic and
one real-world datasets. The results show that the pro-
posed system performs better than the current state-of-
the art for pose estimation in industrial environments.

1 Introduction

Automated visual inspection (AVI) systems are of-
ten crucial for detection of defects in manufactured
products, or for diagnosing problems in the manufac-
turing process. Currently, most of AVI systems are
highly specialized. Nearly all of them, with a few
exceptions, have been designed to perform inspection
of a single object whose position and pose are highly
constrained. Positioning is usually achieved by pre-
cise mechanical manipulation, which can be expen-
sive, space/time consuming, or requires additional cus-
tomization for each specific part [1].
Visual inspection systems that could inspect ran-

domly positioned and rotated objects, would remove
the need for precise mechanical manipulation. This
would consequently reduce the cost of the visual in-
spection systems and enable inspection in scenarios
that were previously thought unfeasible. One of the
challenges to achieve this goal is to provide the visual
inspection system with the ability to detect and esti-
mate the poses of the inspected objects in an uncon-
strained environment (Figure 1).
In this paper, we address the pose estimation of mul-

tiple (textureless) objects of the same type for auto-
mated visual inspection. This is a challenging task,
because objects are randomly positioned, rotated, and
variously occluded. Several methods have been pro-
posed for pose estimation; however, most of the pro-
posed methods detect only the best matching object.
Methods for pose estimation of (textureless) objects
can be classified into model-based and shape-based
methods. Model-based methods directly match the

3D CAD model to the 2D image by determining cor-
respondences between the two [2, 3, 4]. Establishing
correspondences between a 2D image and a 3D model
is a difficult task; consequently, model-based methods
are usually complemented with a 3D information.
Shape based methods match reference shapes with

the shapes on the image. Object’s position and its
pose can be determined by matching the shapes of
various views of the reference objects with the im-
age. Shape-based methods could further be split into
descriptor-based methods that allow utilizing a stan-
dard descriptor-based pipeline [5] and into methods
that use exhaustive search to match the shape with the
image (template-matching); usually utilizing a sliding
window. Several meaningful descriptors for textureless
objects have been proposed. BOLD features [6] tackle
with textureless objects with a compact and distinct
representation of groups of neighboring line segments
aggregated over limited spatial supports. Damen et
al. [7] proposed a pose estimation framework based
on edge constellations combined with a library lookup,
where edge constellations were extracted with a path-
tracing algorithm. In [8], Ferrari et al. proposed
a family of scale-invariant descriptors utilized in a
shape-matching framework, through a voting scheme
in Hough space.
Template matching is one of the more perspective

approaches to (textureless) object detection and pose
estimation in cluttered environments. Although pro-
posed decades ago, Chamfer matching [9] remains the
preferred method when simplicity is required; however,
the näıve approach has a high computational complex-
ity that makes it unfeasible for real-time applications.
Liu et al. [10] extended Chamfer matching with edge
orientations and replaced an exhaustive search, with
a 1D search along distinctive lines, leading to dras-
tic improvements in both pose estimation accuracy
and speed. In [11], shape descriptors were utilized to
avoid multiple sliding window passes over the query
image. Instead, a shape-matching framework was used
to match distinct representation of the shape in the
sliding window. All the aforementioned methods op-
erate on a binary-edge image obtained by one of the

Figure 1: Pose estimation in heavily cluttered environ-
ment.
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Figure 2: Extracted edge orientations from a 3D CAD
model.

edge extraction methods. Steger [12] proposed several
similarity measures inherently robust to illumination
changes that do not require a binary-edge image. Hin-
terstoisser et al. [13] improved the similarity measure
proposed by Steger. They proposed a similarity mea-
sure robust to small translations and deformations and
presented a highly optimized procedure for its evalua-
tion.

2 Method

The proposed method consists of three steps. In the
first step, template matching [13] is used to calculate
similarity measure maps for various object poses. Tem-
plate matching combines both edge and surface normal
information - obtained with photometric stereo - to im-
prove the pose estimation accuracy. Second, a large
number of pose hypotheses are generated with a non-
parametric clustering of the similarity measure maps
and finally, the best pose hypotheses are iteratively se-
lected.

2.1 Template matching

Hinterstoisser et al. proposed a similarity measure
robust to small translations and deformations:

E(I, T , c) =
∑
r∈P

( max
t∈R(c+r)

| cos(ori(O, r)− ori(I, t))|),

(1)
where ori(O, r) is the orientation on the reference im-
age O at positions r ∈ P and P is a list of all posi-
tions to be considered on the reference image. The
template T is then defined as a pair (P,O). Sim-
ilarly, ori(I, r) is the orientation on the query im-
age I at location t ∈ R(c + r) where R(c + r) =
[c + r − T

2 , c + r + T
2 ] × [c + r − T

2 , c + r + T
2 ] de-

fines a neighborhood of size T centered at the current
position c on the query image shifted by r.
Their proposed similarity measure is not limited to

edge orientations and can be used with any modality.
In the proposed method, we combine edge orientations
with the surface normal orientations obtained with a
photometric stereo. Similarity measure, matching sur-
face normal orientations with the object model, is eval-
uated separately for orientations along x- and y-axis.
Evaluated similarity measures for all modalities are in
the end combined with a multiplication.

2.2 Template generation

To use template matching for pose estimation, a ref-
erence template is required for each pose. Usually, tem-
plates are generated for view directions sampled uni-
formly on a sphere. However, for some object shapes,

e.g. for rotationally symmetric objects, the number of
views can be significantly reduced.
Templates for edge orientations are generated di-

rectly from a 3D CAD model. Starting from a polyg-
onal mesh, we first identify visible edges at selected
view (Figure 2). Each visible edge is either:

• a sharp edge between two polygons with very dif-
ferent orientations or

• a boundary silhouette line of the object.

Template for edge orientations is then generated by
sampling the points on the visible edges and extract-
ing their orientations. Points should be sampled uni-
formly over the object to improve robustness to partial
occlusions.
Templates for surface normal orientations are gener-

ated by identifying visible surfaces and then uniformly
sampling the points and their orientations on the visi-
ble surfaces.

2.3 Query image preprocessing

Gradient orientation maps were computed from
the captured images by first extracting the gradient
orientation separately for each image and then for each
location c select the orientation of the image with the
highest gradient magnitude. Same as was done in [13],
we mask the gradient orientations at locations, where
the gradient magnitude is below a certain threshold.
Surface orientation maps were computed with

photometric stereo [14] that can produce a dense nor-
mal field at a very high level of detail, given an as-
sumption of Lambertian scene. Similarly as above, we
mask the orientations that are impossible given the il-
lumination setup.

2.4 Pose hypotheses generation

To generate a number of pose hypotheses, the eval-
uated similarity measure maps {E(I, Ti)} for all the
shape templates {Ti}, i = 1, . . . , Nt are first combined

together. The combined similarity measure map Ẽ is
calculated by:

Ẽ(c) = max
i=1,...,Nt

E(I, Ti, c), (2)

For each location c we also store the index of the tem-
plate with the highest similarity measure.

On Ẽ we detect clusters with a modified mean shift
clustering algorithm proposed by Derganc et al. [15].
They modified the update step in the direction of the
weighted mean of the density in the kernel with the
step to the maximum value in the kernel:

μ = argmax
c∈K

Ẽ(c)− c (3)

where μ is the update step from the current position c
and K denotes the kernel. Each detected cluster is a
pose hypothesis with a corresponding similarity score
s, position and a template index (which also deter-
mines the object’s rotation).
Pose hypotheses are then evaluated in an iterative

fashion. At each iteration, the hypothesis with the
highest similarity score smax is selected. Similarity
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(a) (b) (c)

Figure 3: Example images of synthetic datasets (a, b)
and an example image of real-world dataset (c).

score is again evaluated on the updated query image
I. If the re-evaluated similarity score equals smax the
pose hypothesis is selected. In addition the query im-
age I is updated, by masking the area of the selected
pose hypothesis. On the other hand, if the re-evaluated
similarity score differs from smax the iteration starts
over. We observed that the non-occluded objects have
a higher similarity score; therefore, will be selected
first.

3 Experiments

We conducted evaluations on several synthetic
datasets and one real-world dataset. The method was
compared to the method proposed by Liu et al. [10]
(FDCM), which is state-of-the-art for pose estimation
in industrial environments. Since there is no simple
way of obtaining ground truth data for heavily clut-
tered dynamic environments, we performed quantita-
tive evaluation only on synthetic datasets. For real-
world dataset, we performed a qualitative evaluation,
where the correctly estimated poses were determined
visually.

3.1 Datasets

Synthetic datasets were generated with Blender and
rendered with its Cycles rendering engine. The first
dataset (Figure 3a) represents shapes that are common
in the pharmaceutical domain and the second synthetic
dataset (Figure 3b) represents a more general shape.
For capturing real images (Figure 3c) we used a setup
consisting of a single industrial camera with telecen-
tric lens and the lights directed ∼ 35◦ from the view
direction.

3.2 Implementation details

The method was implemented in C++ and opti-
mized for CPU operation. Processing time for one
1000 × 1000 image was ∼ 100ms, with the majority
of time spent on the evaluation of the similarity mea-
sure. For the FDCM [10] method we used the publicly
available implementation found on the author’s web-
site.

3.3 Evaluation on synthetic datasets

For quantitative evaluation, we use the criterion pro-
posed in [13]. With the model M, ground truth trans-
lation T , and rotation R we can calculate the average
error e of the estimated rotation R̃ and translation T̃
as:

e = avgx∈M||(Rx+ T )− (R̃x+ T̃ )||. (4)

(a)

(b)

Figure 4: Comparison of the proposed approach with
the method proposed by Liu et al. [10]. Figures (a)
and (b) correspond to the first and second synthetic
dataset, respectively.

For symmetric objects, the matching score was cal-
culated as:

e = avgx1∈M min
x2∈M

||(Rx1 + T )− (R̃x2 + T̃ )||. (5)

In our case, the detection was successful if the error
measure e < 0.05d, where d is a diameter of M. More-
over, if less than 30% of the object surface is visible, it
does not count towards false negative detections.

3.4 Evaluation on real-world datasets

On the real-world dataset, we performed a qualita-
tive evaluation. For each estimated pose, a model with
the corresponding pose was overlaid on the image. To
obtain unbiased results, all poses were evaluated with a
standalone application, where the method with which
the pose was estimated was unknown.

3.5 Results

Results for quantitative evaluation and comparison
using two synthetic datasets are presented in figure
4. Results for qualitative evaluation and comparison
using the real-world dataset are presented in figure 5.

4 Discussion

Method was evaluated and compared with the cur-
rent state-of-the-art on two synthetic and one real-
world datasets. Pose detection in a heavily cluttered
environment is a difficult task due to shadows, occlu-
sions, self-occlusions and many ambiguities occurring
due to neighboring objects. We show that a high pose
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Figure 5: Comparison of the proposed approach with
the method proposed by Liu et al. [10](FDCM) on the
real-world dataset.

estimation accuracy is achievable, even in heavily clut-
tered environments, using only a single industrial cam-
era. For (partly) diffuse surfaces, the precision can be
improved by incorporating surface normal information.
We use photometric stereo, which produces dense sur-
face normal information unachievable by other triangu-
lation methods, thus it is well suited for small detailed
objects.
The experiments using several synthetic and one real

dataset show superior detection rate comparing to the
method proposed by Liu et al. [10]. The improve-
ment is more prominent on simple objects where edge
orientation alone is often not sufficient for pose disam-
biguation (first synthetic dataset and the real-world
dataset). On synthetic datasets, we use surface nor-
mal information in both x- and y-axis, but for the real
dataset, only the surface normals along a single axis
are available, because we used a two-light setup.
The pose hypotheses were generated from a com-

bined similarity measure map, due to the computa-
tional complexity of the clustering algorithm. Perform-
ing clustering separately on each evaluated similarity
measure map would have several advantages; for ex-
ample, detecting two objects with the same location
but different poses. Therefore, finding an algorithm
for more efficient non-parametric clustering will be a
part of our future work.
Poses were selected by a simple iterative procedure,

based on the assumption that non-occluded objects
have a higher similarity score; therefore, will be se-
lected first. Experiments have shown that iterative se-
lection performs better than just selecting the best N
clusters. We assume this is, because neighboring ob-
jects can significantly affect the detected position and
the pose.

5 Conclusion

In this paper, we propose a method for pose estima-
tion of multiple (textureless) objects of the same type
in heavily cluttered environments. The method as such
could be used as a component for building more flexi-
ble automated visual inspection systems, removing the
need for precise mechanical manipulation and enable
inspection in settings previously thought unfeasible.
Method was evaluated and compared with the cur-

rent state-of-the-art on two synthetic and one real-
world dataset. The results show that the proposed
method performs better than current state-of-the-art

for pose estimation in industrial environments. How-
ever, by using photometric stereo we assumed that ob-
ject surfaces are at least partly diffuse. Future work
will be directed to extending the method to arbitrary
materials, utilizing specular cues.
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