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Abstract

We propose part-segment (PS) features for estimat-
ing an articulated pose in still images. The proposed
PS feature evaluates the image likelihood of each body
part (e.g. head, torso, and arms) robustly to back-
ground clutter and nuisance textures on the body and
clothing. In contrast to similar segmentation features,
part segmentation is improved by part-specific shape
priors that are optimized by training images with fully-
automatically obtained seeds. The extracted PS feature
is fused complementarily with gradient features using
discriminative training and adaptive weighting for ro-
bust and accurate evaluation of part similarity.

1 Introduction

Image features are crucial for articulated pose esti-
mation (Fig. 1 (a)). While most of articulated pose
estimation methods employ gradient features such as
HOG [4], they include nuisance responses caused by
background clutter and textures on a target body.

This work focuses on how to extract only useful re-
sponses that represent the boundary of each part based
on a shape prior optimized to that part. The bound-
ary is represented by a part-segment (PS) feature, as
shown in Fig. 1 (b).

However, part segmentation with no shape prior is
difficult. The proposed method achieves initial part
segmentation with seeds given to each window. Their
distribution is automatically determined by training
samples. While the distribution of the seeds gives a
weak shape prior, a more reliable dense shape prior is
acquired from training images with the seeds.

Our contribution is threefold: 1) initial shape pri-
ors are extracted by segmentation using part-specific
foreground (FG) and background (BG) seeds trained
automatically (Sec. 4.1), 2) the shape priors are re-
fined and clustered for correctly and efficiently comput-
ing PS features (Sec. 4.2), and 3) adaptive weighting
of the PS features with domain adaptation improves
their discriminativity (Sec. 4.3).

2 Related Work

Image segments can be obtained by image segmen-
tation such as superpixelization [1]. However, it is
not easy to extract each part as one segment because
the part might be over-segmented due to textures and
shades on a human body. Such over-segmentation can
be suppressed by a prior on the configuration/shape
of each part in an image. Table 1 summarizes several
properties of methods for/using segmentation.

As the prior, the configuration of roughly detected
parts is useful (e.g. upper-body [7] detection). In Obj-
Cut [10] and [13, 14, 7], one or more parts are detected
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Figure 1. (a) Parts, depicted by rectangle win-
dows, are configured in their proper locations.
(b) While the proposed PS feature is extracted
by a dense shape prior that is optimized to each
part, correct segmentation is difficult with a weak
shape prior (i.e. “Sparse seeds”).

initially using features with no segmentation. Depend-
ing on the configuration of the detected parts, seeds for
segmentation are distributed. It is, however, difficult
to distribute the seeds to all the parts by using only
the limited detected parts. In addition, error in dis-
tributing the seeds propagates to part segmentation.
While several methods [12, 9] achieve part segmen-

tation and detection independently (“DI” in Table 1),
each of these methods has functional defects. Seg-
mentation cues [9] require manually-predefined sparse
seeds. CHOG [12] also needs a set of manually-given
seeds. In addition, they [9, 12] provide only sparse
seeds (i.e. a pair of FG and BG pixels). The pro-
posed PS feature is extracted by part-specific dense
shape priors optimized by automatically-given seeds
and training images; these advantages are shown in
“SP”, “PS-SP” and “AS” in Table 1.

3 Pose Estimation

An articulated model is represented, in general, by
a tree model defined by a set of nodes, V , and a set
of links each of which connects two nodes, E. Each
node and link respectively corresponds to a part and a
physical connection between parts. The pose parame-
ters of the node are optimized for pose estimation by
maximizing the score function below:

T (P ) =
∑

i∈V
Si(pi) +

∑

i,j∈E
Pi,j(pi,pj), (1)

where pi and P denote the pose parameters of i-th
part and its set of all parts (P = {pi|∀i ∈ V }).
A unary term Si(pi) is a similarity score of i-th part

at pi. In the proposed model, Si(pi) is a sum of filter
responses using HOG [4] and the PS feature.

Si(pi) =
[
FT
i , GT

i

]
[φ(I,pi), ϕ(I,pi, i)]

T
(2)

where Fi and φ(I,pi) denote the filter of i-th part and
the HOG extracted at pi in image I, respectively, and
Gi and ϕ(I,pi, i) denote those of the PS feature.

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-22

114



Table 1. Comparison of body/part segmentation methods. Each column shows whether the methods exhibit
each property. No init: no pose initialization is required. DT: feature is discriminatively trained. Weight:
each pixel/cell in a segment has its weight (i.e. probability to be FG). DI: detection and segmentation are
achieved independently. SP: segmentation is achieved using a shape prior. PS-SP: part-specific shape prior
is given. AS: seeds are given automatically. NR: negative effects due to noise in segmentation are suppressed.

No init DT Weight DI SP PS-SP AS NR

(a) ObjCut [10] Y
(b) Parse [13], Better appearance [5] Y
(c) Segmentation [14] Y Y
(d) PoseCut [3] Y Y
(e) CHOG [12] Y Y Y Y Y
(f) Segmentation cues [9] Y Y Y
(g) PS feature (Proposed) Y Y Y Y Y Y Y Y

A pairwise term Pi,j(pi,pj) is a spring-based score
between i-th and j-th parts, which has a greater value
if the configuration of pi and pj is highly probable:

Pi,j(pi,pj) = wT
i,j · [dxi,j , dx

2

i,j , d
y
i,j , d

y2

i,j ]
T (3)

wi,j is a weight parameter. dxi,j and dyi,j denote (xi −
xj) and (yi − yj), respectively, where (xi, yi) ∈ pi and
(xj , yj) ∈ pj are the locations of i-th and j-th parts.

In what follows, how to learn Gi and extract
ϕ(I,pi, i) is described.

4 Training of Part-segment Features

4.1 Initial Shape Prior from FG and BG seeds

The shape prior of each part is obtained from its
segments in all training images. For extracting the
segments, each image is segmented by SLIC superpix-
elization [1] (Figs. 2 (a), (b), and (c)). Since the region
of a part might be over-segmented, segments in each
window must be clustered into those of the part of in-
terest and others. This clustering is achieved initially
with seeds automatically given by using training data.

4.1.1 Fully-automatic Configuration of Seeds

Training data consists of images and pose annota-
tions. The pose of each part is given as a window and
a pair of end-points of a part line. In each part’s win-
dow, the initial sample colors of FG are collected from
segments that cross the part line. The mean color of
each segment is denoted by cs in s-th segment.

Then the distance between each segment’s color and
its nearest neighbor color in the collected FG samples
is computed. The color distances are binarized [11] for
dividing the segment colors into FG (i.e. colors with
a smaller distance) and BG. If cs is in FG colors, s-th
segment is temporally clustered into FG. This cluster-
ing is executed in all parts’ windows in all training
images. After the window sizes are normalized, the
rate of FG in all training images is computed in each
pixel of each part window. Pixels with the top/bottom
γ % FG rate are extracted as FG/BG seeds.

4.1.2 Segment Clustering with Seeds

The seeds provide a weak shape prior. Segment clus-
tering in each window is re-executed with the seeds:

1. Segments each of which has only FG/BG seeds are
clustered into FG/BG segments in a window. If
either of FG or BG segment is not found, this win-
dow is removed in learning an initial shape prior.

2. Remaining segments are clustered into FG or BG
based on their nearest neighbor colors of FG and
BG segments for part segmentation.

3. The part-segmented window is regarded as an ini-
tial binary PS feature (denoted by ϕi for i-th part)
where FG/BG pixels have 1/0 as pixel values.

Binary PS features of all training images, except
those removed in the above step 1, are averaged in each
part. The mean is regarded as the initial shape prior

(denoted by ϕ̄i for i-th part): ϕ̄i =
(∑Np

i ϕi

)
/Np,

where Np denotes the number of training images.
Figure 2 (e) shows obtained binary PS features. By

comparing them with their respective images (Fig. 2
(f)), it seems segmentation is reasonable. However, a
PS feature might be sometimes extracted unsuccess-
fully, as shown in Fig. 2 (h-upper); its successful ex-
ample is (h-lower).

4.2 Segmentation with Updating Shape Prior

For refining the shape prior, a PS feature of i-th part
in each training image is updated with ϕ̄i:

1. The mean color of a segment having FG/BG seeds
in each window is stored as the sample color
of FG/BG, after the size of the shape prior is
changed to that of the window.

2. By comparing ϕ̄i and a segmented window, the
mean of pixel values of ϕ̄i in s-th segment is re-
garded as the probability that the segment is FG.
This probability is denoted by Pf (s).

3. The nearest neighbor of the mean color in the s-
th segment is found from the sample colors of FG.
The color distance from the nearest neighbor is
denoted by lf (s). lb(s) for BG is also computed.

4. By deeming exp(−lf (s)) and exp(−lb(s)) to be im-
age likelihoods, the Bayes’ theorem gives the fol-
lowing probabilities:

P (f |s) ∝ exp(−λlf (s))Pf (s)

P (b|s) ∝ exp(−λlb(s))(1− Pf (s))

Pixels in s-th segment have the pixel value below:
P (f |s)/ (P (f |s) + P (b|s))
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Figure 2. Initial part segmentation in training. (a) Input image. (b) Correct windows of two parts (i.e.
torso and left lower-leg) superimposed on a segmented image. (c) Cropped windows of the torso and the left
lower-leg. (d) FG and BG seeds, indicated by red and blue circles, respectively. (e) Binary segmentation
using the seeds. (f) Parts’ windows cropped from (a). (g) Another input image. (h-upper) Torso segment
extracted from (g). (h-lower) Desired torso segment in (g).

4.3 Discriminative Training of Adaptively-
weighted Gradient and Segment Features

Discriminative training [6] optimizes the model pa-
rameters in score (1), namely Fi and Gi in (2) and wi,j

in (3).
To improve effects of PS features, an additional

weight is given to a PS feature depending on its con-
fidence. The confidence value C(ϕ(I,pi, i), i) of PS
feature ϕ(I,pi, i) is determined by the subtraction be-
tween ϕ(I,pi, i) and the shape prior of i-th part, ϕ̄i:

C(ϕ(I,pi, i), i) = exp(−||ϕ(I,pi, i)− ϕ̄i||)
For efficient training while using C(ϕ(I,pi, i), i), we

train their appearance filters with domain adaptation
by redundantly-concatenated features [8]. The feature

vector, [φ(I,pi), ϕ(I,pi, i)]
T
, is changed to either of

the followings depending on the confidence value of
the PS feature:

[φ(I,pi), ϕ1, ϕ2, ϕ3]
T =[φ(I,pi), ϕ(I,pi, i), ϕ(I,pi, i),0]

T ,

if C(ϕ(I,pi, i), i) < C′ (4)

[φ(I,pi), ϕ1, ϕ2, ϕ3]
T =[φ(I,pi), ϕ(I,pi, i),0, ϕ(I,pi, i)]

T ,

if C′ ≤ C(ϕ(I,pi, i), i) (5)

C(ϕ(I,pi, i), i) is clustered into two classes by thresh-
old C ′. Given the number of the classes, C ′ was de-
termined by K-means clustering of C(ϕ(I,pi, i), i) of
PS features obtained from all training images; C ′ co-
incides with the middle point between the means of
two neighboring clusters. With feature vectors (4) and
(5), appearance score (2) is rewritten:

Si(pi) =
[
FT
i , GT

i,1, G
T
i,2, G

T
i,3

]
[φ(I,pi), ϕ1, ϕ2, ϕ3]

T
(6)

5 Inference with Part-segment Features

In pose inference, PS features are extracted from all
possible windows in a test image for optimizing score
(1). The PS features are extracted by steps 1–4 de-
scribed in Sec. 4.2. With the extracted PS features,
the appearance score (6) with concatenated features
(4) and (5) are used for computing the score (1).

(Ours) 6/6 5/6 6/6

(Base) 4/6 4/6 5/6
Figure 3. Results of our method and the base
method[15] in BUFFY. The number of correctly
localized parts is shown under each result.

6 Experiments

We tested the proposed PS features with the Image
Parse (IP) [13] and the BUFFY stickmen [7] datasets.
Negative samples for discriminative training were given
from 1218 background images in the INRIA Person
database [4].
A human body is modeled with a mixture of non-

oriented parts proposed by Yang and Ramanan [15].
This base model[15] divides physically-rigid parts (e.g.
limbs) into smaller 26 parts for robustness to in-plane
rotation and foreshortening of body parts.
The seeds in each part were given in a 11×11 pixels

window, which is scaled with respect to the size of a
window.
The results of pose estimation were evaluated quan-

titatively by the percentage of correctly localized parts
(PCP). PCP was implemented by the code in the
BUFFY dataset [7] with the strictest interpretation
described in [15]. Tables 2 3 and show the results. For
comparison, the results obtained by the base model
[15] is shown. The effects of the proposed schemes were
evaluated with (b) initial binary PS features obtained
only by seeds (i.e. shape priors were not used for part
segmentation), (c) PS features without domain adap-
tation (i.e. concatenated features (4) and (5) were not
used), and (d) the full PS features obtained by using
all schemes proposed in this paper.
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Table 2. BUFFY stickmen dataset: Comparative results of PCP. (a) base model [15] (b) our initial binary
feature extracted only by seeds, (c) our feature without domain adaptation, and (d) our proposed PS feature.

Model Head Torso Upper-arms Lower-arms Total

(a) Mixture of parts [15] 99.2 98.8 97.8 68.6 88.5
(b) Ours by binary feature (by seeds) 99.3 98.9 97.4 68.8 88.4
(c) Ours without adaptation (by shape prior) 99.3 99.3 98.2 70.3 89.3
(d) Ours (full model) 99.3 99.3 98.2 70.3 89.3

Table 3. IP dataset: Comparative results of PCP.
Model Head Torso U-legs L-legs U-arms L-arms Total

(a) Mixture of parts [15] 99.0 96.1 85.9 79.0 79.0 53.4 79.0
(b) Ours by binary feature (by seeds) 99.0 96.1 87.3 78.5 79.5 52.7 79.1
(c) Ours without adaptation (with shape prior) 99.0 97.6 88.8 79.5 85.9 56.1 82.0
(d) Ours (full model) 99.0 97.6 89.8 80.5 87.3 56.1 82.4

(Ours) 9/10 9/10 10/10 10/10

(Base) 7/10 7/10 8/10 8/10
Figure 4. Results of our method and the base
method[15] in Image Parse.

In the comparative experiments, our method had
less impacts in BUFFY compared. This might be be-
cause 1) many images in BUFFY have low contrast
that makes segmentation difficult, and 2) people in
BUFFY, who were pictured larger than those in IP,
were too over-segmented by SLIC [1]. While more
deliberate segmentation methods (e.g. globalPb [2])
might alleviate those problems, they need much com-
putational cost. For example, globalPb took 30 sec or
more, while SLIC [1] took around 1 sec for segmenta-
tion of each image in IP.

Figures 3 and 4 show examples of results improved
by the proposed method. For visualization, 6 and 10
parts, whose joints are a subset of those of full-body
26 parts, are displayed. The rightmost example in Fig.
4 shows a typical case where the PS features could lo-
calize a limb (i.e. lower-arms) without being disturbed
by a noisy background.

7 Concluding Remarks

This paper proposed the part-segment features for
evaluating the shape of each part. In training, the PS
features are extracted with automatically trained ini-
tial seeds and then refined for improving a shape prior
on each part. The extracted features are discrimina-
tively trained, and their adaptive weights with respect
to gradient features are also learnt.

Future work includes more efficient extraction and
discriminative representation of the PS feature. Re-
ducing its parameters is also important (e.g. automatic
selection of the number of superpixels).
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