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Abstract

we present a novel machine learning/pattern recog-
nition based colour constancy method. We cast colour
constancy as an illumination source recognition prob-
lem, and have developed an effective and efficient ran-
dom forest based classification technique for inferring
the class of illumination source of an image. In an op-
ponent colour space, we have developed a binary image
representation feature that is somewhat insensitive to
image contents for building the random forest classifier
that infers the likely class of the illumination source of
the image. The binary image feature and the tree struc-
ture of the recognition system are intrinsically efficient.
We present results on colour constancy benchmark da-
ta sets and show that our new technique outperforms
state of the art techniques.

1 Introduction

The vision system observe colours of objects are de-
pended on three parameters: the light source spectral
power distribution function E(λ), where λ is the wave-
length of the light source, a surface is characterized by
its spectral reflectance function S(λ), and Ck(λ) which
characterizes the spectral response function of the ob-
server, where k refers to different colour channels [1].
Then, the colour response signal ρk reflecting from a
given surface under a given illuminant can be defined
as:

ρk =

∫
E(λ)S(λ)Ck(λ)dλ (1)

Most of imaging devices usually have 3 distinct classes
of sensor (k equals to 3), so that the response to light
at a given pixel is defined by a triplet of responses
ρ = (ρ1, ρ2, ρ3). And we will assume this trichromatic
imaging system throughout the paper, as is commonly
used in much of the previous literature [2, 3, 4].
From Equation (1), we could see the colour response

ρ of a device to a given surface depends on both the
reflectance properties of the surface, and the spectral
power distribution of the current illuminant. When
illumination changes, so too the colour response ρ.
However, human vision system can ensure the per-
ceived colour of objects remains relatively constant un-
der varying illuminant conditions, because human vi-
sion system can recognize the object colour changing
caused by the illuminant change, then recover the in-
fluence made by illuminant change. This ability to ac-
count for the change of the light source is called colour

constancy which helps human identify objects [1]. But
from a computer vision perspective this illumination
dependence is a problem since the digital vision system
can not recognize such a changing illuminant scene,this
implies that using colour as a cue to help solve funda-
mental vision tasks such as scene segmentation, object
recognition and tracking might run into problems if the
scene illumination is changing. So, how to estimate the
unknown illuminant is a problem we need to solve.
In this paper, under the assumption that images

taken under the same illuminant should have similar
colours, we present a novel learning-based technique
for colour constancy. We first divide the training im-
ages into a number of classes based on the known illu-
minant data of the images and treat each class of im-
ages as having the same illuminant. We then build a
machine learning model based on Random Forest and
treat colour constancy as a problem of inferring the
illuminant class of the input image. We have tested
our algorithm on a number of publicly available test-
ing databases and show that our new technique out-
performs state of the art techniques.

2 Related Work

There exist many colour constancy methods in the
literature, and these methods can be roughly classi-
fied into three categories. The first category is based
on statistical models. These models are usually asso-
ciated with some parameters determined either based
on low-level statistics or the physics-based dichromatic
reflection model. The most widely used algorithm in
this category is the so called ”grey world” algorithm
[3], which is based on the assumption that the aver-
age of the surface reflectance of a typical scene is a
fixed value, which is referred to as ”grey”. Grey-Edge
is a recent version which assumes that the average of
the reflectance differences in a scene is achromatic [4].
White patch method [3] uses the maximum colour val-
ue in the image as a reference ”white” value instead of
using mean value. As none of these assumptions could
perfectly cover all illuminant conditions, some works
focus on combining these different algorithms and try
to select the optimal algorithm for a given image [5].
The second category is Gamut Mapping algorithm

[2, 6, 7]. The Gamut Mapping algorithm is based on
the assumption that in real-world images, for a giv-
en illuminant, one observes only a limited number of
colours. Therefore, colours form a ”canonical” gamut,
defined as the standard white light illuminant, which
contains all possible colours can be observed under a
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canonical illumination. And for an input unknown
gamut, an estimate of the current illuminant can be
derived by mapping current pixel colour gamut to the
canonical gamut. Finding such mappings is referred
as finding feasible sets. There are several version of
gamut mapping algorithms each differs in the way of
finding the feasible sets. Gamut mapping algorithms
are considered as having the best performance amongst
colour constancy algorithms, however it is possible that
no feasible mapping can be found that maps the input
data into the canonical gamut with one single trans-
form, if the image does not fully satisfied the diago-
nal model. This is one of the disadvantages of gamput
mapping, also, the computation cost of gamut mapping
is the highest. To simplify the algorithm and reduce
the computational cost, several extensions have been
proposed for gamut mapping algorithms [6, 7].
Recently, an increasing number of learning based

colour constancy methods have been developed.
Learning based algorithms estimate the illuminant us-
ing a model that is learned on training data. Ear-
ly approaches using machine learning techniques are
based on neural networks [8]. The input to the neu-
ral network consists of a large binarized chromatici-
ty histogram of the input image, the output is two
chromaticity-values of the estimated illuminant. Al-
though this approach, when trained correctly, can de-
liver accurate color constancy even when only a few dis-
tinct surfaces are present, the training phase requires
a large amount of training data. Another learning-
based approach to illumination estimation problem is
the Bayesian approach [9], bayesian approaches try to
model the variability of reflectance and treat the illumi-
nant as a random variable. The Bayes’ rule computes
the probability of the chromaticity of the dominant
illuminant of a scene given the observed chromatici-
ty colour. The illuminant is then estimated from the
posterior distribution conditioned on the image inten-
sity data. Earlier method in this theme attempted to
do this did not outperform gamut mapping, until Fin-
layson [10] developed ”colour by correlation”, which
used a nonparametric statistical model to capture the
correlation between nearby pixels. This method had
built a simple algorithm framework and produced very
good performance close to gamut mapping methods. It
was shown the learning based colour constancy meth-
ods still had scope for improvement.

3 A Novel Random Forest Approach to
Colour Constancy

The basic idea of our random forest approach is to
treat the problem of estimating the unknown illumi-
nant of the input image as an illuminant classification
problem. Random forest is an ensemble classifier that
consists of many decision trees and outputs the class
that is the mode of the classes output by individual
trees [11]. Random Forest is a generic classification
technique, and here we present an approach of adapt-
ing it for tackling the colour constancy problem.

3.1 Image representation

As in any pattern classification problem, an effec-
tive representation scheme for the real world data is

essential. Some previous works including the first ver-
sion of the gamut mapping based algorithm used al-
l three colour channels in the RGB colour space [2].
The method in [10] used a two dimensional feature
(r = R/B, g = G/B). This model discarded the il-
luminant intensity information and had reduced the
problem from 3D to 2D, however some authors [5] e-
valuated the 2D method and showed the performance
degrades slightly.
We first derive two opponent colour signals, Red-

Green (RG) and Blue-Yellow (BY ), from the original
RGB signals according to (2):

RG = R−G, BY = (R+G)/2−B (2)
We then treat each of the two opponent signals as

an 8 bits per pixel gray scale image and construct pixel
histograms HRG and HBY for the RG image and the
BY image respectively. Here HRG and HBY are 256
dimensional vectors. HRG(i), i = 0 , 1, 2,· · · , 255, is
the frequency of the pixels in the RG image having a
quantized value of i, and same as HBY (i).

The two histograms are obviously dependent on the
contents of the image. As our task is estimating the
colours of the illuminant, our representation should be
relatively content independent. In this case, we only
take into account the existence of a colour rather than
the number of times it appears in the image or the
number of pixels having that colour. A simple way to
achieve this is to binaries HRG and HBY to ensure that
each chromaticity is counted only once. Our image
representation feature is therefore two 256 dimensional
binary vectors obtained as (3):

hRG(i) =

{
1, HRG(i) > 0
0, otherwise

;hBY (i) =

{
1, HBY (i) > 0
0, otherwise

(3)
And finally, we cascade the two binary vectors hRG

and hBY into one 512 dimensional feature vector
FRGBY = (hRG, hBY ) for the construction of our Ran-
dom Forest based recognition or classification based
colour constancy algorithm.

3.2 Constructing the illuminant recognition ran-
dom forest

In building a random tree, we randomly select a
dimension of the feature vector of the input image
and then based on the value of that chosen dimension
(which is either 0 or 1 in our case) distribute the image
to either the right child or the left child of a binary tree
node. For example, if dimension i of FRGBY has been
selected as the testing dimension, the training images
will be split according to Equation (4):

{
Image goes to the left child, FRGBY (i) = 0
Image goes to the right child, FRGBY (i) = 1

(4)

After each split, the input images at the current node
In will be divided into two groups: Il and Ir; which are
then further split until it has reached the leaf nodes.
For a typical decision tree, we should generate multi-

ple hypothesized tests and pick the best split dimension
and threshold value as the split function of each tree
node. At each non-leaf node, N different dimension-
s in the feature vector FRGBY are randomly selected
and then we perform N different splits according to
(4). For each split, we calculate the information gain
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to evaluate the merit of the split. The score function
(information gain) is calculated as (5):

Score(split) = − |Il|
|In|E(Il)− |Ir|

|In|E(Ir) (5)

where E(I) is the Shannon entropy of the class dis-
tributions in the set of samples I. |Il| is the number
of samples contained in the left child and |Ir| is the
number in the right. In is the set of training sample
in node n. After compared the scores of the splits,
the split with the best score will be selected and the
dimension i related with this split will be recorded at
the current node as the split dimension.
The decision tree generation process will be stopped

when certain tree construction criteria such as max-
imum tree depth have been met. Each leaf node is
then associated with an illuminant class distribution
histogram, H(k), k = 1, 2,· · · ,K, where K is the to-
tally number of possible illuminant classes, and H(k)
records the probability of the input image belongs to
the k-th illuminant when it falls onto that leaf node.

3.3 Illuminant estimation based on random for-
est

For a test input image, after extracted the hRG and
hBY features, we let the image features go through
all the trees. When the image reaches a leaf node of
the m-th tree, we save the illuminant class distribution
histogram of the leaf node Hm(k), k = 1, 2,· · · ,K,
where K is the totally number of possible illuminant
classes. Suppose we haveM trees in the random forest,
we sum all M illuminant class histograms together:

H(k) =
M∑

m=1

Hm(k) (6)

The l-th illuminant is estimated as the input image’s
illuminant if H(l) ≥ H(k) for all k.

3.4 Recover the colour under canonical illumi-
nant

After labeled the l-th illuminant as the estimate il-
luminant for the input image, we could simply use
diagonal model of illumination change to recover the
image colour under a canonical illuminant. The di-
agonal model is colour channel independent, for ex-
ample, the colour signal values of a white patch tak-
en under a white, canonical illuminant is (Rc,Gc,Bc),
and the response under an unknown illuminant is
(Re,Ge,Be),then the mapping from the unknown illu-
minant to canonical illuminant could be achieved by
scaling the three channels by (Rc/Re,Gc/Ge,Bc/Be),
and the same scaling works for other non-white patch-
es.

4 Algorithms Evaluation

We evaluate our algorithm’s performances on two
public benchmark datasets: The first dataset consist-
s of 321 images of constructed scenes taken under 11
different illuminant sources in the Lab SFU [12]. For
each illuminant source the ground truth is known, so

the class number in the SFU dataset is 11. The sec-
ond database [13] is a large database contains 11346
images of several indoor or outdoor scenes. The im-
ages were actually frames in a video; each image has
a grey ball at the bottom right corner to calculate the
ground truth of the illuminant. The database contains
15 different scenes and we regard each scene as having
one class of illuminant. In each class, 80% of the im-
age is used for training and the other 20% is for test.
The original images and the ground truth are under
sRGB colour space. Note that all the results are av-
eraged over 50 different random trials (each with 80%
different training and 20 % testing samples).
Following a common practice in the literature, we

calculate the angular error according to equation (7)
from [1] as the performance indicator:

Errorangular = cos−1((T · E)|T |−1|E|−1
) (7)

where T is the ground truth illuminant value and E
is the estimated value by the colour constancy algo-
rithms. The error is calculated by the degree distances
between the two colour vectors.

4.1 Colour features evaluation

Figure 1. colour features performance.

In addition to using the RG and BY colour signals to
derive the image representation features as described
in Section 3, we have also tested other colour signals
for deriving the binary histogram of equation (3) for
building the random forests, including, the original R,
G and B signals to build a 3x256 dimensional binary
feature vector; r = R/(R+G+B) and g = R/(R+G+
B) to build a 2x256 dimensional binary feature; and
rg and by to build 2x256 dimensional binary feature,
where r = R/(R + G + B), g = G/(R + G + B), and
b = B/(R+G+B), rg = r − g, by = ((r + g)/2− b.
The results are shown in Figure 1. As the number

of trees increases, the performances are getting better.
RG and BY feature always have a better result. r
and g, rg and by combinations performed worse than
the original R, G and B signals. One possible reason
is that the illuminant intensity may still have useful
information and RG and BY colour signals contain
illuminant information.

4.2 Comparison of colour constancy algorithms

The second experiment is the evaluation of differ-
ent algorithms for the two datasets with three ground
truths (The gray ball dataset’s ground truth values
have been modified under a linear colour space since
the original dataset is captured under a non-linear
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colour space [14]). The compared algorithms includ-
ed are classic algorithms like the grey world [3], the
max-RGB algorithms [3], and some leading algorithms
like the grey edge [4], and the gamut mapping algo-
rithms with different gamut weighting methods [7, 15].
All the results for these algorithms are from the website
www.colorconstancy.com created by [14], an evaluation
platform for colour constancy. The tree number in the
forest is 100 (We have varied the number of the trees
and results are similar).

Table 1. Algorithms Comparison.

Algorithms Lab SFU Grey Ball
(Original)

Grey Bal-
l (Linear)

Grey world[3] 9.8 7.9 13
Max-RGB[3] 9.1 6.8 12.7
Grey edge 2nd
order[4]

5.2 6.1 10.6

pixel-based Gamut
mapping[7]

3.7 7.1 11.8

Edge-based Gamut
mapping[15]

3.9 6.8 12.8

Intersection-based
Gamut mapping[15]

3.6 6.9 11.8

Random forest 4.2 5.6 8.2

Table 1 shows the results of the random forest algo-
rithm have close performance to gamut mapping meth-
ods in Lab SFU dataset and the lowest angular errors
of all the algorithms for Grey-ball datasets for both
ground truths. As Grey edge and Gamut mapping al-
so need to set some parameters in different datasets
(Minkowski-norm ρ is varied between 1 and 15, and
the smoothing value σ is varied between 1 and 12), the
results are from the website www.colorconstancy.com
which are the best results of the algorithms.Figure 2
shows a visual example of colour correction results of
an image based on illuminants estimated by differen-
t algorithms. The image is selected from Grey ball
dataset and it is seen that the visual result of the ran-
dom forest method is also better with lower angular
errors.

Figure 2. Colour constancy colour correction re-
sults of grey world, max RGB, grey edge and ran-
dom forest. Top row, left: original, middle: cor-
rected with ground truth data, right: random for-
est. Bottom row, left: grey world, middle: max
RGB, right: grey edge.

5 Concluding Remarks

In this paper, we have developed a new colour con-
stancy algorithm. Based on the assumption that im-
ages taken under the same illuminant should have sim-
ilar colours, treating the unknown image illuminant es-
timation task as an illuminant classification problem,
we developed a new binary colour feature to repre-
sent the colours of an image and used random forest

method as a classifier to estimate the illuminate class
of the image. Compared with other algorithms on t-
wo benchmark datasets, random forest is more efficient
and can outperform other state of the art algorithms.
However, as a classification method, random forest can
only provide a few discrete illuminant class estimation-
s based on how the datasets have been classified. In
these two test datasets, the SFU dataset has 11 know
illuminant classes. But for the grey ball dataset, or
other datasets with real world images, how to divide
the dataset into an appropriate number of classes is an
important issue for further study.
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