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Abstract

Spiral architectures have been employed as an effi-
cient addressing scheme in hexagonal image processing
(HIP), whereby the image pixel indices can be stored in
a one-dimensional vector that enables fast image pro-
cessing. However, this computational advance of HIP
is hindered by the additional time and effort required
for conversion of image data to a HIP environment,
as existing hardware for image capture and display are
based predominantly on traditional rectangular pixels.
In this paper, we present a novel spiral image process-
ing framework that develops an efficient spiral address-
ing scheme for standard square images. We refer to
this new framework as “squiral” (square spiral) im-
age processing (SIP). Unlike HIP, conversion to the
SIP addressing scheme can be achieved easily using
an existing lattice with a Cartesian coordinate system;
there is also no need to design special hexagonal im-
age processing operators. Furthermore, we have de-
veloped a SIP-based non-overlapping convolution tech-
nique by simulating the “eye tremor” phenomenon of
the human visual system, which facilitates fast com-
putation. For illustration we have implemented this
technique for the purpose of edge detection. The pre-
liminary results demonstrate the efficiency of the SIP
framework by comparison with standard 2D convolu-
tion and separable 2D convolution.

1 Introduction

Hexagonal image processing (HIP) [5] has attracted
attention recently as it has shown positive outcomes for
fast processing in edge and corner detection [1,2,4,7,8].
Unlike a square lattice, the points in a hexagonal lat-
tice are difficult to address using Cartesian coordi-
nates. A spiral architecture that enables an efficient
addressing scheme for a hexagonal lattice has there-
fore been developed [9]. As shown in Fig. 1, the spi-
ral addressing scheme originates at the centre of the
hexagonal image and spirals out using one-dimensional
indexing, with each pixel having six equidistant neigh-
bours. A major advantage of such a spiral addressing
scheme is that any location in the image can be repre-
sented by a single coordinate value, enabling the spiral
image to be stored as a vector.
A major problem affecting the advancement of HIP

is that almost all existing hardware for capturing and
displaying images is based on a rectangular architec-
ture. Therefore, extra effort is required to convert
a square- or rectangular-based image to a hexagonal-
based structure before any indexing or processing can
take place. In addition, such conversion to a hexagonal
image can introduce distortions due to the hexagonal
lattice not being aligned in two orthogonal directions;
for example, the image may need to be shifted by a
half-pixel to simulate capture on a hexagonal lattice.

Inspired by the spiral architecture for HIP, we now
propose a novel spiral addressing scheme for standard
rectangular pixel based images, to which we refer as
“squiral image processing”(SIP). The advantages of
SIP are threefold. Firstly, conversion is much easier
than for HIP. Whereas converting to HIP from a rect-
angular pixel-based image requires a process that typ-
ically involves pixel sub-division, followed by regroup-
ing and averaging of sub-pixel values for pixel recon-
struction, for SIP we can use directly the pixels in a
square image. Any conversion involves merely shifting
points within the same Cartesian coordinate system.
Secondly, SIP is designed for square images, so it can
be implemented using existing hardware. Thirdly, an
image in SIP can be stored as a vector, thus retaining
the computational advantage of HIP, and there is no
need to design special hexagonal image processing op-
erators as the kernel for square images can be applied
to SIP images too.
In this paper we first explain the proposed SIP

addressing scheme and conversion to SIP from the
standard Cartesian 2D addressing scheme. We
then demonstrate the development of SIP-based non-
overlapping convolution by adopting an approach that
mimics eye tremor in the human vision system. For il-
lustration we use the application of edge detection, but
the technique is applicable to any convolution-based
operator or feature extractor.The preliminary results
for performance evaluation demonstrate the efficiency
of the SIP-based approach.

2 Spiral Architecture for a Square Image

2.1 Spiral Architecture

An illustration of a one-dimensional addressing
scheme for HIP is shown in Fig. 1. It is seen that
the address starts from the centre pixel (layer-0), then
moves from pixel 1 to 6 indexed in a clockwise direc-
tion. The cluster of the centre pixel together with its
six (layer-0) neighbours is considered as layer-1. It
can be noticed that layer-2 is generated by recursive
use of layer-1 clusters, such that seven layer-1 clusters
are combined to form layer-2. Ultimately, the entire
hexagonal image can be considered as a layer-λ cluster
comprising 7λ pixels.
Inspired by the spiral addressing for HIP, we pro-

pose a new spiral scheme for square images. Similar
to HIP, the SIP image originates at the centre of a
square image and spirals out using one-dimensional in-
dexing. An illustration for the proposed SIP address-
ing scheme is given in Fig. 2. The SIP layer-1 consists
of nine pixels (layer-0 clusters), and layer-2 consists of
nine layer-1 clusters, i.e, 81 pixels. Higher layers are
generated recursively, similarly to HIP but with nine
clusters combined each time rather than seven.
This structure facilitates the use of base 9 numbering

to address each pixel within the image. For example,
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Figure 1. The spiral architecture for a layer-2
hexagonal image.

Figure 2. The spiral addressing scheme for a
layer-2 SIP-based image.

Figure 3. One-dimensional address values for SIP
image.

the pixels in layer-1 are labelled from 0 to 8, indexed
in a clockwise direction. The base 9 indexing continues
into each layer, e.g. layer-2 starts from 10, 11, 12, ...,
and finishes at 88. Subsequent layers are structured re-
cursively. The SIP image is stored in a one-dimensional
vector with addresses as illustrated (in part) in Fig. 3.

2.2 SIP Conversion
HIP conversion relies on use of a re-sampling scheme

[3,5] to match the location of points in the square and
hexagonal images. As SIP is based on square images,
no re-sampling scheme is needed. We need only to
convert the lattice of a square image to the new SIP
format based on the spiral addressing scheme. The
steps are as follow.
For a given image with size M × N , the num-

ber of SIP layers λ can be found by λ = (logM +
logN)/log(9); then the length of the SIP image is 9λ.
Because the SIP address scheme is base 9, the conver-
sion between the SIP address and a decimal number
can be found by (anan−1...a1) = an × 9n−1 + an−1 ×
9n−2+ ...+a1, where the values ai of a SIP address are
0 ≤ ai < 9. We can adapt the spiral addressing scheme
for HIP [9] and the SIP address can be represented as:

anan−1...a1 =

n∑
i=1

ai × 10i−1 (1)

where
∑

denotes Spiral Addition and × indicates Spi-
ral Multiplication [5]. For example, the point at SIP
address 867 can be located by finding the addresses of
800, 60 and 7. Next, we explain how to locate these
SIP addresses in a standard 2D square image.

For a point represented by Cartesian coordi-
nate (x,y), we define the centre point as L(0) =
(0, 0). Based on the SIP addressing scheme, we
can find the points in layer-1: L(1)=(-1,0), L(2)=(-
1,1), L(3)=(0,1), L(4)=(1,1), L(5)=(1,0), L(6)=(1,-1),
L(7)=(0,-1) and L(8)=(-1,-1). To locate the points in
a higher layer, we calculate the number of pixels re-
quired to shift the point from the centre to the target
point by

L(ai × 10i−1) = 3i−1 × L(ai) (2)

For example, based on Eq.(1) and Eq.(2), the point
L(87) can be located by L(87) = L(80) + L(7) = 3 ×
L(8)+L(7) = 3×(−1,−1)+(0,−1) = (−3,−4). To lo-
cate a point at L(4536), L(4536) = L(4000)+L(500)+
L(30)+L(6) = 33×L(4)+32×L(5)+3×L(3)+L(6) =
27× (1, 1) + 9× (1, 0) + 3× (0, 1) + (1,−1) = (37, 29).
Hence the point L(4536) can be found by shifting the
start point from (0,0) to (37,29). Based on these shift-
ing rules, we can then convert a square image to a SIP
image (which is stored as a vector). Next, we explain
how such a SIP image can be used in a fast processing
approach by developing “eye tremor”-based SIP con-
volution.

3 SIP Convolution via Eye Tremor

3.1 Simulation of Eye Tremor

Standard feature extraction is usually executed via
convolution, where typically a gradient-based operator
is applied to a pixel and its neighbours. The process
of determining these neighbours in a one-dimensional
addressing scheme is not straightforward. For HIP, de-
termining a pixel’s neighbours requires time consuming
special hexagonal and radix-7 addition [5]. To tackle
this issue, a biologically inspired framework [8] has
been proposed for HIP by modelling eye tremor. The
concept of eye tremor, rhythmic oscillations of the eye,
has been exploited in image processing [6]. The tradi-
tional approach to feature extraction based on overlap-
ping convolution operators does not closely represent
the human visual system. Furthermore, the human vi-
sual system does not process single static images, but
instead a series of temporal images that are slightly
off-set due to involuntary eye movements. Thus [8]
proposed a non-overlapping convolution that can be
implemented by simulating eye tremor.
Inspired by [8], we develop the eye tremor framework

for the SIP case. In Fig. 4, consider I0 as a “base” SIP
image, and eight additional images Ij , j = 1, 2, ..., 8
can be obtained by shifting I0 by one pixel in the im-
age plane along the proposed spiral addressing scheme.
The “centre” of each image Ij is located at a pixel
within the layer-1 neighbourhood centred at image
I0. Each image is stored as a vector after being con-
verted from the 2D image structure, which enables us
to achieve fast and efficient processing for feature ex-
traction.
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Figure 4. Illustration of the 9 SIP image centres
in the eye tremor approach.

3.2 SIP based Convolution

Feature detection operators are often based on first
derivative approximations. For hexagonal image fea-
ture detection, x- and y-components of a hexagonal
operator need to be designed accordingly to compute
the derivative [1]. This is unnecessary for SIP as SIP is
designed for square images, and so any standard oper-
ator (e.g., size 3× 3 or 9× 9) can be converted directly
to a SIP vector. For example, for the Sobel operator
in the x- and y-directions:

Sobelx =

(
−1 0 1
−2 0 2
−1 0 1

)
, Sobely =

(
−1 −2 −1
0 0 0
1 2 1

)

(3)
to perform convolution with a SIP image, we first flip
the kernel matrix and then convert it into a layer-1 SIP
vector, generating Sobelx = [0, 2, 1, 0,−1,−2,−1, 0, 1]
and Sobely = [0, 0, 1, 2, 1, 0,−1,−2,−1]. For a given
image I0, convolution of a Sobel operator (denoted as
H1) across the entire image plane is achieved by ap-
plying the operator sparsely to each of the nine im-
ages Ij , j = 0, ..., 8 and then combining the resultant
outputs. In the eye tremor framework, in each of the
images Ij we apply the operator H1 only when centred
at those pixels with spiral address 0(mod 9), hence
achieving non-overlapping convolution. In its general
form, convolution of the SIP image Ij with an operator
Hλ can be defined as

Gj
λ(s0) =

∑
s∈Nλ(s0)

Hλ(s)× Ij(s), (4)

where ∀s0 ∈ {s|s = 0(mod9))} and Nλ(s0) denotes
the λ-neighbourhood centred on the pixel with spiral
address s0 in image Ij . For the Sobel example, the
matrix implementation of convolution of I0 with H1,
based on Eq. (4), can be written as:

⎛
⎜⎜⎝

G0
1(0)

G0
1(10)
...

G0
1(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

I0(0) I0(1) ... I0(8)
I0(10) I0(11) ... I0(18)

...
...

. . .
...

I0(k) I0(k + 1) ... I0(k + 8)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
H1(0)
H1(1)

...
H1(8)

⎞
⎟⎟⎠

(5)
where k = 0, 10, 20, 30, .... We can apply the same
process to the remaining eight images Ij , j = 1, ..., 8;
each is a SIP image created by shifting the origin by
one pixel from I0. The outcome can be obtained by
assembling the results of Gj

1 as,

⎛
⎜⎜⎝

G0
1(0) G1

1(0) · · · G8
1(0)

G0
1(10) G1

1(10) · · · G8
1(10)

...
...

. . .
...

G0
1(k) G1

1(k) · · · G8
1(k)

⎞
⎟⎟⎠ (6)

The above process is illustrated in Fig. 5. The final
outcome in a SIP format is obtained by rearranging
each row of the matrix (Eq.(6)) into a vector,

[G0
1(0)G

1
1(0)...G

8
1(0)G

0
1(10)G

1
1(10)...G

8
1(10)...G

0
1(k)...G

8
1(k)]
(7)

Based on the process above, SIP based approach
achieves exactly the same outcome as standard 2D con-
volution. In 2D convolution using a kernel of size A×B
requires A×B multiplications for each sample. For an
image of size M × N four loops are needed to com-
plete M ×N × (A×B) multiplications. For SIP-based
convolution, each sample still involves A×B multipli-
cations, but since the SIP image is stored as a vector,
all of the processes above can be executed in a more
efficient manner.

4 Performance Evaluation

We evaluate the proposed SIP approach using edge
detection as the application, and we use the Sobel edge
detector for illustration. We have used three well-
known test images: lena, peppers and coins, with im-
age sizes 100 × 100, 384 × 520 and 738 × 900 respec-
tively. Each image was converted into a SIP image,
and in which the number of SIP layers for each image
are: layer-4(81 × 81), layer-5(243 × 243) and layer-6
(729×729) respectively. We compare the SIP approach
to both the standard 2D convolution and to the Mat-
lab built-in function conv2.m (optimised by separable
convolution). Implementation of standard 2D convo-
lution involves use of four for loops that moves the
flipped kernel along each row and column of the in-
put image and then computes the weighted sum over
the neighbourhood. For separable convolution, the 2D
convolution is performed by two one-dimensional con-
volutions (assuming that the 2D filter is separable), so
is much faster than the standard 2D convolution ap-
proach.
The results of Sobel edge detection are shown in Fig.

6, in which the left column shows the results from the
original images by standard 2D convolution and in the
right column are those from SIP images. The extent
of the region of SIP images is also highlighted within
the original images in Fig. 6(left column). It is clearly
shown that the edge detection results from SIP are the
same as those from the standard approach, except that
the size of the SIP image is slightly smaller. The cor-
relation of edge results between SIP-convolution and
standard convolution confirms that both approaches
provide identical results (Table.2). Note that the orig-
inal images are used for visual comparison here (there
is no other difference between the standard and SIP
convolution results). In the following comparison of
run-times, the edge detection was performed for the
same image size as the SIP image in each case.
For SIP conversion, we pre-calculated the coordinate

shifting table up to layer-6 (total 533441 pixels). This
look-up table needs to be calculated only once and then
saved for use in any SIP conversion. The average time
for conversion of a square image to one layer-5 SIP
(243 × 243) is 0.065 sec. Because the focus of this
evaluation is on the convolution, the time required for
SIP conversion was not considered for the comparative
evaluations. The run-times include the time for cal-
culating the gradient in the x- and y- directions and
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Figure 5. Illustration of assembling the one-dimensional vectors for SIP based convolution.

Figure 6. Sobel edge detection by standard 2D
convolution (left column) and SIP convolution
(right column). The SIP image size is also high-
lighted in the original images (left).

magnitude of both. The run-times based on an average
of 100 runs are presented in Table 1. It can be seen
that the SIP approach is not only much faster than
standard 2D convolution, but also comparable to the
separable convolution, demonstrating the efficiency of
the proposed SIP framework.

5 Conclusion

We have presented a novel spiral image processing
framework for use with standard rectangular pixel-
based images. This framework enables fast feature
detection by use of a spiral architecture in conjunc-
tion with eye tremor and non-overlapping convolution.
In the SIP framework, images can be converted eas-

Table 1. Average Run-times (Seconds)

Images Lena Pepper Coins
Standard 0.006826 0.061737 0.605872

SIP 0.000282 0.001130 0.016618
Separable 0.000284 0.001305 0.014501

Table 2. Correlation with Standard Convolution

Images Lena Pepper Coins
SIP 1.0 1.0 1.0

ily from their existing typically rectangular coordinate
system. Therefore SIP can be incorporated directly
with existing hardware systems and state-of-the-art
image processing methods for square images. The pre-
liminary results demonstrated for edge detection show
the computational efficiency of the SIP approach. Fur-
ther development will consider the application of SIP
for interest point detection and efficient feature repre-
sentation in real-time image and video retrieval.
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