5-18

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN

Egocentric articulated pose tracking for action recognition

HarukaYONEMOTO, Kazuhiko MURASAKI, Tatsuya OSAWA,
Kyoko SUDO, Jun SHIMAMURA, and Yukinobu TANIGUCHI
NTT Media Intelligence Laboratories, NTT Corporation
1-1 Hikari-no-oka, Yokosuka, Kanagawa, 239-0847 Japan
{yonemoto.haruka, murasaki.kazuhiko, osawa.tatsuya,
sudo.kyoko, shimamura.jun, taniguchi.yukinobu}@lab.ntt.co.jp

Abstract

Many studies on action recognition from the third-
person viewpoint have shown that articulated human
pose can directly describe human motion and is invari-
ant to view change. However, conventional algorithms
that estimate articulated human pose cannot handle
ego-centric images because they assume the whole figure
appears in the image; only a few parts of the body ap-
pear in ego-centric images. In this paper, we propose a
novel method to estimate human pose for action recog-
nition from ego-centric RGB-D images. Our method
can extract the pose by integrating hand detection, cam-
era pose estimation, and time-series filtering with the
constraint of body shape. Experiments show that joint
positions are well estimated when the detection error
of hands and arms decreases. We demonstrate that the
accuracy of action recognition is improved by the fea-
ture of skeleton when the action contains unintended
view changes.

1 Introduction

In recent years, Head Mount Display (HMD) nav-
igation systems have become popular for supporting
daily life and the work of technicians. Current sup-
port systems display information corresponding to the
user’s operations. If the systems can recognize where
the user is working and what he or she wants to do,
the user can be notified in advance as what should or
should not do or what they forgot to do. We develop
a method that recognizes the user’s actions from the
video taken from the user’s view (ego-centric video) to
realize a better user interface. Common approaches for
action recognition from egocentric video are based on
object recognition because objects are very important
cues in identifying what the user is doing and where he
or she is [1, 2, 3, 4]. However, different actions can be
performed on the same object and actions that do not
involve an object might not be recognized. Our ap-
proach to describing human motion is to estimate the
user’s articulated pose. We assume that the camera
is fixed to the user’s head. Our proposal can extract
the pose by integrating hand detection, visual self lo-
calization, and time-series filtering with the constraint
of body shape.

2 Related work

Motion-based action recognition. Some methods
use optical flow to obtain the movement features of
hands [5] or track hands [6]. Sudeep et al. [6] distin-
guishes different actions on the same object, for exam-
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Figure 1. Our framework of pose tracking

ple using a spoon to scoop or to stir. However, these
methods are weak against view direction changes since
these features are not view invariant; the same motion
captured from different view directions yields different
features.

Action recognition using articulated human
pose. Many studies have shown that accurate action
recognition is made possible by the features of artic-
ulated human pose [7, 8, 9]. Xia et al. [10] proposed
a view invariant feature, HOJ3D, and demonstrated
that it offers significant view invariance and high ac-
curacy. The articulated human pose obtained from
ego-centric video is as useful as that from third person
video. However, conventional approaches do not sup-
port ego-centric video [11, 9], since they assumes that
the whole body is observed in the image.

In this paper, we propose a method that can esti-
mate human articulated pose from ego-centric video,
in which only a few parts of the body appear. Our
proposal can extract the pose by integrating hand de-
tection, visual self localization, and time-series filtering
with the constraint of body shape.

3 Proposed method

Our method has two main processes; extract cues to
estimate articulated pose, then extract pose by using
the cues. Cues are (1) user’s body shape; Figure 1-(1),
(2) camera pose; Figure 1-(2), and (3) hand and arm
position in the image; Figure 1-(3). (3) hand and arm
position in the image is shown in Figure 2. (2) camera
pose and (3) hand and arm position in the image is
usually obtained by a visual self-localization technique
[12] and a hand and arm detector [13], respectively. In
this paper, to evaluate the accuracy of pose estimation
in an ideal environment, we get these cues and the
input image data from a modeling program of human
pose. The input motion data is obtained by a motion



Figure 2. The cues of hand and arm positions
in the synthesized depth image. square: the po-
sition of hand joint, sphere: the interior-divided
position of hand and arm joint, star: the position
of elbow.

capture system and input to the modeling software.
The ego-centric image is synthesized by rendering the
CG data of human pose that the modeling software
outputs. We virtually obtain (2) camera pose and (3)
hand and arm position by using a modeling program
of human pose.

3.1 Human skeleton model

Articulated pose is generally described using a tree
structure. We define a tree structure whose root node
is the head. The root node is assumed to be the cam-
era mounting point (Figure 3); the other nodes rep-
resent joints. This model consists of 11 joints; head,
neck, chest, L/R collar, L/R shoulder, L/R forearm,
L/R hand (L: Left, R: Right). The head has 6 degrees
of freedom (rotation and translation), while the other
joints have just three to cover rotation around the z,
y, z axes. The parameters to be estimated are all rota-
tion parameters of joints except for head because the
parameter of the head is computed by camera pose.
We write the set of these parameters as the pose pa-
rameter vector. The pose parameter vector at time ¢
is described as

®t == (et,lygt,27"'70t,j7"'70t,10)5 (1)

where j is joint index, and ¢ is frame number. The ro-
tation parameters have restrictions related to the range
of joint movements. The restriction is represented by
using « and 8 which means upper and lower limit, re-
spectively.

(2)

The lengths between neighbor joints, i.e. user’s body
shape, are represented as the offset from the parent’s
joint when all rotation parameters are 0.

aj < b < B

0; = (X;,Y;, Z;, 1), (3)
where o; is represented using a homogeneous coordi-
nate system. Impossible poses are omitted by con-
sidering the restriction and predefining o;. In HMD
scenarios, the device is intended for personal use so it
is natural to assume that the device knows the user’s
shape parameters, o;. Therefore, we need to estimate
only pose parameters 6.

3.2 Articulated pose tracking
Model-based tracking is used to combine the cues

and a skeleton model. By using a skeleton model, we
can utilize the known dynamics of human motion and
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Figure 3. The tree structure for the articulated
pose of the upper body.

omit the impossible joint positions as candidates. Ar-
ticulated pose is estimated by using a particle filter
[14]. We denote the state vector at time ¢ by x; and
the sequence of observation vectors up to time ¢ by
Y: = {y1,y2,...,y+}. In the particle filter framework,
the posterior probability p(z:|Y;) is approximated by
a finite set of samples {a:gl)}?:l (called particle) with
importance weights 77,51), where n denotes the number
of particles and ¢ is particle index. At each time ¢,
particles are updated by two steps; the prediction step
and the update step. In the prediction step, IV parti-
cles are generated by replacing of each particle at time
t — 1 with its equivalent computed from the motion
model. In the update step, the weight of each particle
is computed and particles at time ¢ are resampled from
these predicted particles according to these weights.
The new set of particles describes the approximation
of posterior distribution. In our framework, the state
vector is pose vector ®; and an observation sequence
consists of depth images and the 2D positions of hand
and arm in the image.

3.2.1 Prediction step

In the prediction step, N particles are predicted from
the previous set of particles using the motion model.
We employ a static model as the motion model since
joint angles move only slightly given the frame rate.
Particles are predicted by adding Gaussian noise to
each rotation parameter of ¢, ;. This Gaussian distri-
bution has zero-mean and variance &, where r means
the range of motion of joint angle and C' is a constant.
These predicted samples satisfy the joint angle restric-
tion (2).

3.2.2 Update step

The likelihoods of particles are evaluated by the re-
sults of hand detection and depth images. The joint
positions of hands and arms are projected onto the
image from each predicted sample. We denote this po-
sition by ¢ and the 2D position of hands and arms in
the image by ¢’. ¢ and ¢’ is a vector describing the z,
y coordinates of the position in the image. We denote
a9 as the distance in pixels between ¢ and ¢. We

denote the depth value at ¢’ by d,(,i) and the distance
between camera and joint (hand and arm) positions

in camera coordinate as déi). The likelihood of each
predicted particle is described as

90 1y) = [ f(al) x x(dy). ).
keK

(4)

where f(-) is a Gaussian distribution with zero-mean
and variance o, and k is joint index corresponding to
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where f’(-) is a Gaussian distribution with zero mean
and variance o’. The likelihood function returns larger
values as distance a(? shrinks and the depth value in
the image approaches the distance between camera and
joint (hand and arm) positions. The poses are omitted
if the distance between the joint position and camera
is smaller than the depth value from the depth sensor.
The weights of all particles are normalized as

7@ = q0{"1y)/ 3" a0 ),

O —dgal) it dg > dl,

; ; 5
itdl), < d), ©

x(dy'y. dy

(6)

where y; describes the input depth image and the cue
of hand and arm positions. N particles are generated
at time ¢ by choosing a particular sample from pre-
dicted samples according to the weights. This new set
of samples describes the posterior probability.

4 Action recognition

We employ Xia’s framework [10] for action recogni-
tion to get its view invariant features. They proposed
HOJ3D, which is a pose vector representing the oc-
cupancy of joints relative to the root joint, i.e. hip
center in their method. We compute HOJ3D in each
frame and quantize the results. We then train a Hidden
Markov Model (HMM) using the quantized HOJ3D se-
quence as the observed data. When a test sequence is
given, an action label is returned for it by classifying it
as the action that has the largest posterior probability.

arg max P(V|\). (7)
1=1,2,...,M

decision

V' is a test sequence and \; are the trained parameters
of each HMM; M is the total number of actions.

5 Experimental evaluation

5.1 Experimental settings

We used Poser Pro 2014! as the modeling program
to build the dataset. A motion capture system (Op-

Thttp://my.smithmicro.com/poser-pro-2014.html
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tiTrack?) was used to build the dataset. All synthe-
sized data was generated for one human model and o;
matched that of the human model.

Articulated pose tracking. We captured 4 actions
(draw circle, horizontal arm wave, push, two hand
wave) including dynamic motion of hands, arms and
upper body. They were collected from 1 person. We
took the variance in prediction of pose parameter to
be C = 30. The restriction of rotation parameters, «
and f§ in (2), was set to be the same as default values
in Poser’s model. The variances of Gaussian distri-
bution in computing likelihood (4, 5) were arbitrary
constants. We synthesized the detection error of hand
and arms (corresponding to Figure 2) by adding Gaus-
sian noise to the correct positions of hand and arm in
the image. These 2D positions are used as the hand
and arm position cues in the image.

Action recognition.We captured the motion of sev-
eral assembly operations including 5 actions (open
cover, attach HDD, screw, attach memory, close cover).
These actions were performed twice by 2 different peo-
ple and this data was used for HMM training. Test
data are collected by taking the actions performed for
one time by the two people the same as in training
data. To evaluate the proposal’s robustness against
view change, the test data included view changes. We
compared two HOJ3D features; one sets the chest
joint position as the spherical coordinate origin (Chest-
HOJ3D) while the other sets the camera position as the
origin (Camera-HOJ3D). We consider the former as
the skeleton feature and the latter as the non-skeleton
feature.

5.2 Results

Articulated pose tracking. Figure 4 shows the es-
timation error of the joints when the standard devia-
tion of the detection error of hands and arms increases.
The hand joints may lie in the image but not the chest
joint. The results of draw circle and push are shown
as representative of the other motions. In draw circle,
the error in left hand position is large because the left
hand does not appear in the image, but this does not
affect the estimation of other joints. In both actions,
the poses are stably estimated when the standard de-
viation of detection error is under 20. We conjecture

?https://www.naturalpoint.com/optitrack/



Table 1. Accuracy of action recognition (average F-score). 5 actions associated with device assembly are

evaluated using motion capture dataset.
'view change’: the test data contains view changes.

'no view change’: the test data does not contain view changes,

no view change

view change

Chest-HOJ3D
Camera-HOJ3D

0.75
0.91

0.67
0.21

Table 2. Accuracy of action recognition (F-score). 5 actions associated with device assembly are evaluated
using estimated skeleton data. The test data contains view changes.

open cover attach HDD screw attach memory close cover average
Chest-HOJ3D 0.91 0.69 0.25 0.37 0.15 0.48
Camera-HOJ3D 0.86 0.00 0.57 0.06 0.21 0.34
that this is because the proposed method (1) consid- References

ers the smooth movement of joints through its use of
time-series filtering, (2) omits impossible poses by the
skeleton model, the restriction of joint movement and
predefined user’s shape parameter, and (3) computes
the likelihood of each particle by using the results of
the multi joint detector and the depth value.

Action recognition. The results of action recogni-
tion are shown in Table 1. In a preliminary experiment,
we used the motion capture data as the joint’s 3D po-
sition. The results show that data containing view
changes decreases the accuracy of both chest-HOJ3D
and the camera-HOJ3D. The former is more accurate
than the latter. This is because hand motion relative
to the camera position can not be distinguished from
camera motion relative to hand position; the motion of
the hand against the chest position is camera motion
invariant. Table 2 shows the result of action recogni-
tion using skeleton estimated by the proposed method
(noise added to hand and arm position cues is 0). If
the data contains view changes, Chest-HOJ3D offers
higher overall accuracy as the preliminary experiment
shows.

6 Conclusion

We proposed an articulated pose tracking framework
that offers novel motion features for action recognition
to be extracted from ego-centric videos. Even though
some joints of the upper body cannot be seen in first
person views, our solution is effective as it integrates
hand detection, camera localization and a predefined
human body model and employs particle filtering to
track the user’s full upper body. Experiments on syn-
thesized depth videos showed that pose can be stably
estimated even in the presence of hand position errors
due to our use of model-based tracking and time-series
filtering. The results gained from action recognition
trials showed that describing motion relative to the
chest is useful in capturing actions in the face of unin-
tended view changes. In the future, we aim to improve
overall joint estimation accuracy and apply our method
to real data.
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