
An efficient FPGA implementation of the Harris Corner feature

detector

Tak Lon Chao
The Dept. of Electronic Engineering

The Chinese University of Hong Kong
chaotaklon@gmail.com

Kin Hong Wong
The Dept. of Comp. Sci. and Engin.

 The Chinese University of Hong Kong
khwong@cse.cuhk.edu.hk

Abstract

In computer vision, the Harris corner feature de-
tector is one of the most essential early steps in
many useful applications such as 3-D reconstruc-
tion. However, if it is implemented in software, the
resulting code is probably not able to be executed in
real time under low cost mobile processors. This
paper proposes an efficient hardware approach that
offloads the repetitive feature extraction procedures
into logic gates hence the solution is low cost to
produce and low power to operate compared to its
software counterpart. In this project, the system is
built and tested on a popular prototyping FPGA
(Field programmable Gate Arrays) platform (Zed-
board) with a small FPGA device. The experiments
and demos show that the speed and accuracy of the
feature detector are good enough for many real
world applications.

1. Introduction

The Harris corner detector [1] for detecting sharp
corners in images is useful in many computer vision
applications, such as pose estimation and 3-D
structure from motion (SfM). It finds sparse corner
points of an image, which can be used for estab-
lishing key corner correspondences of two
consecutive images of an image sequence. Using
these correspondences, for examples, in SfM, the
pose and structure of the rigid objects in the scene
can be calculated. Modern desktop computers can
perform corner detection in real-time, however, it is
still too complex for a low cost embedded system.
In this paper, we propose an efficient hardware im-
plementation to obtain the Harris corners using
FPGAs programmed in Verilog. We would like to
show that we can design a small and efficient hard-
ware for corner feature extraction which is suitable
to be used in mass produced products such as the
mobile phone.

1.1 Contributions of this paper
We propose a hardware Harris corner detector

using a minimal hardware configuration but retain-
ing all the functionalities of the Harris algorithm.
We achieve this using the following approaches. (1)
We developed an alternative method for
non-maximum suppression Har-

ris corner detector using less hardware resources
with no extra time delay. (2) We developed an effi-
cient mechanism to control the number of features
to be obtained. We found that most existing systems
do not implement this or using too much hardware
to achieve the same goal.

The structure of the paper is as follows. In section

2, we will discuss the theory of the Harris corner
detector and the related work. In section 3, we will
discuss the implementation details. In section 4, we
will talk about the experiment results and in Section
5, we will conclude our work.

2. Theory and related work

2.1 The Harris algorithm
The Harris detector [1] detects a position in the

image where both image gradients in two orthogonal
axes are high. In appearance it is a corner. It is useful
to establish correspondences of 2-D corner points of
two images (either stereo images or two consecutive
images of a sequence) coming from a 3-D point
feature. In sparse field 3D reconstruction (SfM),
these are the 2-D features that are used in the recon-
struct process. The Harris algorithm takes a small
window of an image (e.g. 6 6 pixels) and deter-
mines whether the window contains a corner feature
or not. Assume I(x,y) is the image point, we first
calculate the gradient matrix M.

where i, j are pixel indexes of a window of range W.
If the two eigenvalues of M are high, it is a corner
feature point. Finding the eigenvalue may be time
consuming, so an approximation formula is used
instead:

where k is a value about 0.04-0.06. If R is bigger

than a threshold, the center pixel in the window is a
corner feature candidate. By scanning the windows
at different positions of the entire image, all feature

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-16

89

candidates can be found. In practice, a local window
(say 25 25 pixels) may contain too many corner
features which cause confusion to some vision al-
gorithms such as SfM. To solve this, the system
should only allow one corner feature for a local
window to be reported, and that can be achieved by

-maximum suppression in the
original Harris detector algorithm. Moreover, fea-
ture candidates are sorted by the Harris score (value
of R), the N highest score candidates are the best N
corner features. In addition, the amount of features
found in every image in a sequence is normally kept
to be the same for maintaining better continuity.
However, this method is very complex for an FPGA
and also causes time delay. Therefore, in this work,
an efficient method is proposed and will be discussed
in section 3. After this step, the remaining feature
candidates are all good sparse feature points. Of
course, the number of feature points obtained may
vary according to the image content and require-
ments.

2.2 Related work
 There are several existing implementations of the
Harris corner feature detector on hardware. Howev-
er, most of them are either using too much hardware
resource or not controlling the amount of feature
points reported. In [2], it develops an af-
fine-invariant feature detector that uses too many
look-up-tables that can only fit into expensive
high-end FPGA devices. Such devices may also
consume too much power. Systems in [4, 6, 7, 10,
11] use a fixed threshold to obtain the Harris score
only, thus, there is no mechanism to control the total
amount of features in an image. In [5], it calculates
the eigenvalues (the hardware is too complex) di-
rectly instead of using the approximation formula,
and a fixed threshold is used. In [8], it uses a sorting
module to control the amount of feature points.
However, the sorting algorithm employed is itera-
tive therefore it would be difficult to implement it
on a pipelined-system (because one must unroll it
into a sequence of hardware representation which is
costly). The paper reports using 18,539 4-input
look-up-tables plus 33 DSPs (Digital Processing
Processors) for the entire system which includes the
sorting module. It is quite large for a hardware cor-
ner detector. In [9], it uses a sorting module plus an
adaptive threshold module to control the number of
features found. The paper argues that simply adding
or multiplying a constant to the threshold may let
the amount of features oscillate around the target.
They propose a complex mechanism called inverse
cumulative histogram to overcome the problem.
The hardware usage of the entire system is 18,431
4-input look-up-tables plus 81 DSPs. We argue that
it is unnecessarily to use such a large device. We
suggest it can be solved by simply multiplying a
constant to the threshold.

The Harris algorithm also requires to constraint

only one corner feature exists in a local area (say 25

 25 pixels). In [11], it shows that if such a con-
straint does not exist, all pixels around the actual
corner will be considered as corner features and is
problematic in many applications. Systems in [3, 4,
5, 6, 10] use a method called non-maximum sup-
pression to solve this problem. Only the one with
the maximum Harris score in a local window will
become a corner feature. However, this mechanism
requires a Harris score window that consumes extra
hardware and also causes a delay of a couple of
scan lines.

3. Implementation

3.1 Overview of the system
The design is implemented on the Avnet Zedboard

[12], using an OmniVision OV7670 image sensor
[13] and a VGA monitor to show the result. The
FPGA part is the Xilinx xc7z020-clg484-1, which is
an SoC consisting of FPGA slices and a due-core
ARM Cortex-A9 processor (not used in our de-
sign).The system block diagram and the hardware
setup are shown in Figure 1 and 2. The camera reg-
isters are initialized through the SCCB interface. The
camera will convert its Bayer pattern data to the
16-bit RGB565 format, and output in two clock
cycles though the 8 bit data bus, together with line
and frame synchronous signals. The image resolu-
tion is 640 480 and frame rate is 60 fps. The
camera data capture-module will convert the sepa-
rated data back to the16-bit RGB565 format. The
Harris corner feature detector will output the corner
feature result and the image for display. Due to the
timing mismatch between the camera and VGA
signal, a frame buffer must be inserted to separate the
two clocked domains (can be removed to save cost if
no display is required). Also, one may use external
DRAM instead of wasting block RAM resources.
Figure 3 shows the block diagram of the Harris
corner feature detector in detail. The system is writ-
ten in HDL (VHDL and Verilog) and is synthesized
using the Xilinx Vivado IDE. The camera interface
and VGA controller is based on an open-source
project [15].

Figure 1: System block diagram

90

Figure 2: Photo of the hardware setup

3.2.1 Calculating corner feature score

The RGB565 pixel data is converted to 8-bit grey

scale using the formula:

. (R=Red, G=Green, B=Blue color signal)

The multiplication operation is implemented by bit

shifting. Then, the pixel goes through a series of D

flip-flops and line buffers to create a 6 6 window,

where the line buffer is built using block RAM re-

sources. An array of 50 subtractions calculates the

image gradient in X and Y directions. The window

size is 5 5 pixels. An array of multipliers and

adders calculate the elements of the 2 2 matrix M

(described in section 2) in parallel. The element

and are actually the same, so only 3 ele-

ments are needed for the calculation. The Harris

score is obtained by the approximation formula and

compared to a threshold. If it is bigger than the

threshold, it is a corner feature candidate. In the

approximation formula, multiplying 0.04 is esti-

mated by (5/128) because multiplying a 3-bit

number by 5 and shifting 7-bit (achieve dividing

128) is easier than dividing it by 25.

3.2.2 Eliminating feature points in local area
If the Harris score is bigger than a threshold, the

feature candidate will be considered as a corner

feature first. This candidate will also propagate in a

feature window (the 1bit 35 window in Figure 3).

The feature candidates come later will not be con-

sidered as a corner feature because a feature

candidate is already found. As mentioned, there

should only be one corner feature in a local area. Our

proposed method requires a binary window only,

where the classical non-maximum suppression

method requires a window of Harris scores. There-

fore, the hardware resources required of our

approach is largely reduced. Also, the classical

non-maximum suppression method determines the

corner feature after the Harris score propagates

through the window which may result in some time

delay. In our proposed method, the window is a

branch of the pipeline. No extra delay is created.

Details of the system are explained below.

3.2.3 Finding best N corner feature candidates

Our idea is that we provide a corner feature counter

which will be cleared at the end of every video

frames. If the corner features found in the last frame

is out of the expected range, the threshold will be

multiplied or divided by 2. If the number of corner

features is within the range, the threshold will remain

the same.

Figure 3: Block diagram of the Harris corner feature detector

91

The reason we choose multiplication instead of ad-
dition and subtraction is that the amount of features
obtained is not linearly proportion to the threshold,
but is proportional to a function closer to the second
order. We also set an upper and lower bound for the
threshold. If the image is too dark, it is meaningless
to further lower down the threshold to capture bad
corner/edge features. If there is no upper bound and
the image background is too complex, the threshold
will become very high and the corner detector may
not output features for a while for some monotonic
background, hence the system is not responsive
enough. Our approach of using the adaptive thresh-
old retains the functionality of feature sorting, while
largely reduces the hardware usage. Figure 4 shows
the locations of the corners found by our method
through the Zedboard VGA display facility. The
original grey scale image is shown and filled with
white dots at locations of corner feature points de-
tected.

4. Experimental results

Figure 4: Harris Corner feature detected by our

FPGA hardware method

Figure 5: Harris Corners detected by the OpenCV

library running on a desktop computer

4.1 Feature detection result

The one pixel white dots in Figure 4 indicate

corner features detected by hardware. The white or

black circles were added on these pictures by hand

to assist viewing. A video frame is captured using

the same camera by a desktop computer. Figure 5

shows the Harris feature detection result using the

OpenCV library. One may find that the detection

result is not the same since the algorithm is modi-

fied for hardware implementation. However, the

hardware detection result is equally good, except for

those features found at the bottom scan line. They

are caused by the mixing of the last few rows of the

current frame and first few rows of the next frame,

as the Harris window will not stop scanning on the

image boundary. These bad features can easily be

eliminated by software in applications using our

hardware.

4.2 Hardware resources usage and speed analysis

 Table 1 shows the resource usage when allowing

our hardware Harris detector to use the on-board

DSP (digital signal processor) resources available in

the Zedbaord development system [14]. With the

help of the DSP, our approach can operate at 144

frames per second. We also show tests that no DSP

is used. Table 2 shows the resource usage when we

force the system to stop using the DSP. The maxi-

mum frame rate drops to 98 frames per second. We

see that with the help of the DSP, the use of LUT

(look up table) and registers are reduced. The ex-

periment shows that there are two choices for a

designer. Either using a DSP with less LUTs and

registers resulting in higher frame rate, or use no

DSP but more LUTs and registers resulting in a lit-

tle lower frame rate.

Table 1. Hardware resource usage (with DSP).

Resources Full system Harris detector

6-bit LUT 1400 977
Register 870 662
36kb BRAM 64 0
18kb BRAM 5 5
DSP48E1 110 110

Simulated operating frame rate = 144 frames per

second.

Table 2. Hardware resource usage (without DSP)

Resources Full system Harris detector

6-bit LUT 9849 9485
Register 4335 4131
36kb BRAM 64 0
18kb BRAM 5 5

 Simulated operating frame rate = 98 frames per
second.

92

4.3 Comments on the performance
The corner detector performs well on high con-

tract scenes where the background and target
objects have distinct grey levels or colors. Applying
our system on ordinary indoor environments usually
generates good results. However, if the scene is too
dark or too bright, our system may fail to capture
good features.

4.4 Public domain accessibility

Researchers are welcome to test our code. Source
code and demo videos of our project can be down-
loaded from:

http://www.cse.cuhk.edu.hk/~khwong/www2/pub
lic/mva15/mva15.html

5. Conclusion and discussion

We have successfully developed a complete Har-
ris corner feature detector on FPGA using fewer
logic gates as compared to previous approaches. As
shown in the experiment results, the Harris detector
uses 9485 6-bit LUTS and 4131 registers only
without using any DSP resources. This low budget
of hardware is the result of our improved method
that simplifies the maximum suppression procedure
in the classical Harris detector. Our hardware ex-
periment showed that using a modern FPGA can
enable our system to perform 60 frames per second
Harris feature detection. Moreover, our simulation
experiment showed that the detection rate can goes
up to 144 frames per second. One application of this
work is to apply it to real time 3-D reconstruction or
pose estimation for mobile devices. Hence, the re-
duced hardware requirement for feature extraction
can result in lowering manufacturing cost and pow-
er consumption for these systems.

References

[1] C. Harris, M. Stephens, A combined corner and edge

detector , Proc. Alvey Vision Conference, 1988, pp.

147 151.

[2] A proposed pipe-

lined-architecture for FPGA based affine-invariant

feature detectors IEEE CVPR 2006, New York, US ,

June 2006

[3] J. Nikolic, A Synchronized Visual-Inertial Sensor

System with FPGA Pre-Processing for Accurate Re-

al-Time SLAM In IEEE ICRA, 2014.

[4] A. Amaricai, C.-E. Gavriliu, O. Boncalo. An FPGA

Sliding Window-Based Architecture Harris Corner

Detector In International Conference on Field Pro-

grammable Logic and Applications (FPL), 2014

[5] A. -time 2-D feature

IEEE Conf. Computer Vision and Pattern Recognition,

Santa Barbara, CA, 23-25 June 1998, pp. 586-593.

[6] M. Fatih Aydogdu, M. Fatih Demirci, and Cosku

Kasnakoglu

ROBIO,Shenzhen, pp. 2177-2184, 12-14 Dec. 2013.

[7] A. Morfopoulos, B. Metz. Rapid Corner Detection

Using FPGAs In NASA Tech Briefs, December

2010; 9-10

[8] M. Birem, F. Berry, Hardware Architecture for Visual

Feature Extraction Scabot'12 Workshop in IROS

2012

[9] M. Birem, F. Berry. FPGA-based Real time Extrac-

tion of visual features IEEE Int. Sym. on Cir. Sys.

(ISCAS), 2012

[10] H.J. SONG, Q. LI. A Practical Target Tracking Sys-

tem Design. In Proceedings of the 2009 International

Workshop on Information Security and Application

(IWISA), 2009

[11]

2006. (accessed on 15/12/2015

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10

.1.1.163.3502&rep=rep1&type=pdf)

[12] Avnet Zedboard, Manufacturer part number:

AES-Z7EV-7Z020-G (accessed on 15/12/2015,

www.em.avnet.com/en-us/design/drc/Documents/Xili

nx/PB-AES-Z7EV-7Z020-G-V4b.pdf)

[13] OmniVision, OV7670 datasheet (accessed on

15/12/2014, http://www.voti.nl/docs/OV7670.pdf)

[14] Xilinx, DS190 Zynq-7000 All Programmable SoC

Overview (accessed on 15/12/2014,

http://www.xilinx.com/support/documentation/data_s

heets/ds190-Zynq-7000-Overview.pdf)

[15] Hamsterworks Wiki, Zedboard OV7670, [online]

2013, (accessed on 15/3/2015,

http://hamsterworks.co.nz/mediawiki/index.php/Zedb

oard_OV7670)

93

