
Scene Retrieval by Unsupervised Salient Part Discovery

Sugegaya Naotoshi Tanaka Kanji Yanagihara Kentaro
University of Fukui

3-9-1, Bunkyo, Fukui, Fukui, JAPAN
tnkknj@u-fukui.ac.jp

Abstract

While bag-of-words (BoW) scene descriptor has
been widely used for scene retrieval applications, the
BoW descriptor alone often fails to capture local details
of a scene and produces poor results. In this paper, we
address this issue by a simple effective approach, “un-
supervised salient part discovery”, in which a set of
salient parts are discovered via scene parsing and used
as additional queries for the scene retrieval. Further,
we also address the issue of discovering salient parts
in a scene, and present a solution that provides sim-
ilar parts for similar scenes. Multiple ranking results
from the individual part queries are then integrated into
a final ranking result by adopting an unsupervised rank
fusion technique. Experimental results using challeng-
ing scene dataset validate the effectiveness of our ap-
proach.

1 Introduction

Visual search, object matching and many other scene
retrieval applications rely on representing images with
compact discriminative scene descriptors. The most
popular descriptor is bag-of-words (BoW), a histogram
of frequencies of visual words obtained by quantizing
local image descriptors to a visual vocabulary. This
study is built on a recently developed BoW scene de-
scription scheme, vector of locally aggregated descrip-
tors (VLAD) [1], which achieves state-of-the-art dis-
criminativity while maintaining extreme compactness.

This study is motivated by the observation that
BoW scene descriptor alone fails to capture local de-
tails of a scene. Typically, BoW descriptor is sensi-
tive to view changes, and often produces poor results
in scene retrieval [2]. A simple solution is to use a
bag of raw local SIFT-like descriptors (e.g., bag-of-
raw-features [3]). However, it may not be possible
in practice as it requires to memorize and match a
large number of high dimensional local SIFT-like de-
scriptors. Instead, we introduce a global-local hybrid
descriptor, called part descriptor, which describes a
relatively large region covering 30%-80% of the entire
image. By integrating a set of local BoW part descrip-
tors and the global BoW scene descriptor, we achieve
a practical compactness-discriminativity tradeoff.

Further, we also address the issue of discovering use-
ful parts in a scene. This is different from the problem
of object segmentation, i.e., segmenting an image into
meaningful parts such as objects, which is a core prob-
lem in the field of machine vision [4, 5, 6]. Our goal
is to realize consistent segmentation for similar view
images, allowing one to obtain similar part descriptors
for similar scenes. Our solution is composed of three
distinct steps. (1) For stable part segmentation, we
borrow techniques from the hierarchical region clus-

tering algorithms [7], which provide a pool of homoge-
neous scene parts with different levels of inter-region
appearance similarity. (2) To select a small number of
effective scene parts, we adopt the PCA-based saliency
evaluation measure recently developed in [8] for the
application of part-based scene description. (3) To in-
tegrate multiple ranking results from individual part
retrievals, we develop a novel ranking scheme based on
an adaptive ranking strategy.
Our contributions are summarized as follows: (1)

We provide a simple effective approach, “unsupervised
salient part discovery”, in which a set of useful parts
are discovered via scene parsing and used as addi-
tional queries for scene retrieval. (2) We provide an
effective strategy to integrate both the color and the
SIFT cues by combining the part segmentation and
the part retrieval. (3) We present a practical scene re-
trieval system that achieves practical discriminativity-
compactness tradeoff. (4) Experimental results using
challenging scene dataset validate the effectiveness of
the proposed scheme.
Bag-of-words (BoW) scene descriptors have been ex-

tensively studied in the context of scene recognition
[9, 10, 11]. There are also several techniques to extend
BoW from various aspects, including self-similarity of
images [12], quantization errors [13], query expansion
[14], database augmentation [11], vocabulary tree [15],
global spatial geometric verification as post-processing
[16], spatial pyramid matching for capturing spatial
context [17], and various strategies for feature pooling
[18]. Most of the above techniques extending BoW can
also be adopted in extending our approach. The scene
recognition task addressed in this paper is different
from scene categorization where the goal is to classify
a scene into pre-learned scene categories. In scene cat-
egorization literature, BoW has been combined with
discriminative learning techniques such as SVM and
achieved high recognition performance. For instance,
[19] developed a discriminative scene learning frame-
work in which the structure of a database image is
represented by a graph and used for graph based rank-
ing and re-ranking that improve BoW. Some methods
describe a scene as a collection of meaningful parts,
such as object models [20] and part models [21]. Al-
though these approaches may potentially provide rich
information of a scene, existing techniques rely on a
large amount of training examples to learn the models
under supervision.

2 Scene Retrieval Framework

Our part-based scene description approach combines
two different types of cues, color cue and SIFT cue,
to achieve better scene retrieval performance (Fig.1).
We observe that color cue provides inter-region similar-
ity information that is useful for image segmentation,
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Figure 1. Algorithm pipeline.

while SIFT cue provides inter-image invariant infor-
mation that is useful for image matching. We also
observe that many part hypotheses are typically pro-
duced by color-based part segmentation, but they can
be effectively verified by SIFT-based part matching in
a hypothesize-and-verification fashion [22].

Based on the observations, our scene retrieval frame-
work consists of four distinct steps:

1. Segment the scene into a pool of part regions,

2. Evaluate saliency of each part and select salient
parts with highest saliency,

3. Compute scene/part descriptors,

4. Retrieve the database using each descriptor as
query and integrate the multiple retrieval results.

Each of the above steps 1)-4) will be explained in detail
in the following subsections.

2.1 Segmentation

Our strategy for part segmentation is to segment
an image into homogeneous color regions. We adopt
the hierarchical region clustering strategy [7] as it con-
sistently produces similar region segments for similar
views. Our framework begins by extracting superpix-
els using the SLIC algorithm in [23] as initial candi-
dates of homogeneous color regions. It then iteratively
merges a pair of similar regions at a time to produce
an additional region candidate. For each iteration, it
selects a pair of neighboring regions with highest simi-
larity among all neighboring region pairs in the pool of
candidate regions, and merges the selected region pair
to produce a larger and less homogeneous region. Dis-
similarity between a region pair is measured in terms
of Euclidean distance in RGB color space. Given N
initial superpixels, we finally obtain (2N − 1) region
candidates in total.

2.2 Saliency

We adopt PCA-based saliency measure in [8]. The
basic idea of PCA-based saliency is to use PCA to cap-
ture dominant variations among patterns, and to eval-
uate the distinctiveness of a pattern by measuring the
PCA distance. Our framework begins by extracting
SIFT keypoints from the entire image, and computing
a SIFT descriptor for each keypoint. The PCA is then
applied to those computed SIFT descriptors to extract
the principal modes of variation. The L1 norm of a
SIFT descriptor is computed in D′ = 10-dim PCA co-
ordinates, and is used as the SIFT’s distinctiveness.

We compute the saliency score for every SIFT feature
in the part region and use the total score as the region’s
saliency score.

2.3 Descriptors

Our part selection strategy is motivated by the fact
that all the (2N−1) part candidates output by the pre-
vious part segmentation stage often are not equally im-
portant. Our selection framework evaluates saliency of
each candidate region, and then selects K part regions
with highest saliency score. Then, it translates those
SIFT descriptors that belong to each scene part into
a discriminative compact VLAD descriptor in [1]. In
our part-based scene descriptor, every query/database
image is represented by a pairing of a VLAD scene de-
scriptor and a set of (K − 1) VLAD part descriptors.

2.4 Retrieval

The scene retrieval aims to rank all the database
images according to similarity to query. We do a se-
ries of K independent scene retrievals using each of
the K VLAD scene/part descriptors as query, and ob-
tain multiple ranking results from individual retrievals.
Our basic idea is to consider multiple search engines for
the multiple part queries and fuse individual search re-
sults by using rank fusion, similar to Reciprocal Rank
Fusion introduced in [24]. Rank fusion techniques are
low cost and unsupervised; i.e., they do not require in-
dividual engines to return similarity scores nor super-
vised training data. Currently, multiple search engines
share a single common database to save the total spa-
tial cost. More formally, to integrate the multiple rank-
ing results from K queries, we score a database image
by integrating reverse ranks from individual scene/part
retrievals in the form:

S = w r−1
0 + (1− w)

K−1∑

i=1

r−1
i (1)

Here, r0 and ri (i ∈ [1,K − 1]) indicate the ranking
results of scene and each i-th part retrieval. In default,
K = 40 and w = 0.5.

3 Experimental Evaluation

For evaluation, we use image dataset consisting of
view images taken around a university campus, using
a handheld camera as the vision sensor. We went along
nine different paths, some of them going through the
main central path and others going along the pedes-
trian walkway along the campus wall, as can be seen
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Table 1. Performance results.

data ID BoW VLAD
PSD

K:10 K:20 K:30 K:40
1 31.7 26.9 25.1 25.5 21.6 22.1
2 38.7 27.8 24.4 23.8 21.8 17.7
3 34.4 14.0 14.7 13.4 11.5 10.7
4 27.5 20.8 19.1 17.1 16.8 16.0
5 28.9 17.5 16.5 14.7 13.6 13.7
6 21.6 17.6 17.2 15.1 14.5 12.4
7 21.7 27.1 27.7 25.9 20.9 16.3
8 28.9 28.2 29.8 26.0 24.8 21.3
9 26.4 23.7 24.8 24.8 22.7 18.3

in Fig.2. Occlusion is severe in all the scenes, and peo-
ple and vehicles are dynamic entities occupying the
scene. We traversed each path twice and obtained a
pair of collections of view images for database building
and scene retrieval for each path. All images are 1000 x
667 RGB color images. For each path, we collected sets
of 338, 406, 474, 529, 371, 340, 354, 397, 328 database
images respectively for each dataset, and we also col-
lected sets of 100 query images for each dataset. The
dataset consists of many near duplicate images, which
makes our scene retrieval a challenging task.

By performing several experiments, we compare the
performance of the proposed part-based scene descrip-
tion method, denoted as “PSD”, with other two base-
line methods, bag-of-words (“BoW”) [25] and VLAD
(“VLAD”) [1]. For VLAD, we interpret a view image
into one VLAD scene descriptor. For PSD, we inter-
pret an image into K VLAD descriptors, consisting
of one scene descriptor and (K − 1) part descriptors,
using the scene description scheme described in sec-
tion 2.3. We conducted a series of 100 independent re-
trievals for each of the 100 query images and for each of
the 9 different datasets. Retrieval performance is mea-
sured in terms of averaged normalized rank (ANR) in
percent (%). ANR is a ranking-based retrieval perfor-
mance measure, where the smaller value is better. To
compute ANR, we evaluated the rank assigned to the
ground-truth relevant image for each of the 100 inde-
pendent retrievals, and then normalized the rank with
respect to the database size and computed the average
over the 100 retrievals.

Table 1 shows the ANR performance for individual
methods for each dataset. It can be seen that the pro-
posed PSD method clearly outperforms both the BoW
and VLAD methods. We are also interested in and
investigated the relationship between the number K
of scene/part descriptors per image and the scene re-
trieval performance. Table 1 reports the results. It can
be seen that the proposed system still almost outper-
forms other methods even when the number of parts is
reduced to K=20.

Fig.2 shows example results of five independent
scene retrievals. The first and second columns of Fig.2
are the query input and the ground truth database im-
ages. The third and the fourth columns compare the
results of database images top-ranked by the BoW and
the proposed methods. As can be seen, our approach
provides an accurate image retrieval by combining both
local part descriptors and global scene descriptor that
capture local details while recognizing global layout of
the scene.

Figure 2. Scene retrieval results.

Fig.3 illustrates results of part matching for an ex-
ample pair of relevant query and database images. In
this figure, four pairs of parts that received highest
part-level similarity in terms of the reverse rank r−1

i
are selected and shown in each row. In Fig.3a, the
largest scene parts that correspond to the entire image
regions are selected. In Fig.3b, relatively small parts
that consist of buildings are selected as matched parts.

4 Conclusions

This paper proposed two distinct contributions with
regard to BoW scene descriptor in scene retrieval ap-
plications. First, we provided a simple effective ap-
proach, “unsupervised salient part discovery”, in which
a set of useful parts are discovered via scene parsing
and used as additional queries for scene retrieval. Our
framework combines color and SIFT cues in an effec-
tive manner in order for part segmentation, part-based
scene description and retrieval. As a next contribu-
tion, we presented a practical scene retrieval system
that achieves practical discriminativity-compactness
tradeoff. Experimental results using challenging scene
dataset showed our approach improves over baseline
approaches.
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Figure 3. Examples of part matching beween a query and a database images.
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