
Character Extraction by Integrating Color into Edge-based
Methods

Naoki Chiba
Rakuten, Inc.

4-13-9 Higashishinagawa, Shinagawa-ku,
Tokyo, 140-0002, JAPAN

naoki.a.chiba@mail.rakuten.com

Xinhao Liu
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku,

Tokyo, 152-8550, JAPAN
liuxinhao@ok.ctrl.titech.ac.jp

Abstract

Text recognition is difficult in e-commerce images,
which contain a mixture of digital born text and natural
scene text. To extract character regions in an image,
a method using the consistency of the stroke widths of
a character, called stroke width transform (SWT), is
promising because of its simplicity and low computa-
tion. The method is to measure stroke widths after de-
tecting edges. On the other hand, character extraction
based on color clustering has been investigated sepa-
rately. This paper presents algorithms for extending
the SWT method by integrating color-clustering infor-
mation. Our experimental results show the effective-
ness of the proposed algorithms both with digital-born
and natural-scene images.

1 Introduction

Images are frequently used to embed textual infor-
mation. As the number of mobile cameras and the
usage of images on the Internet increase, the need
for information retrieval from images has been grow-
ing rapidly. One application is to recognize text
on product photos for e-commerce, especially for e-
marketplaces. The images contain both text of the
product, such as product model or maker names, and
text added by sellers using an editing tool for promo-
tion such as prices or shipping information. Text in
these images is a mixture of digital born text and nat-
ural scene text. The performance of conventional opti-
cal character recognition (OCR) is insufficient for the
current applications.
Text recognition research can be divided into two

categories: text localization (also called text detec-
tion) and word recognition. Text localization means
to detect rectangular regions of words in an image.
Word recognition means to recognize a word from the
cropped rectangle of a word region in an image. Both
categories require character extraction as a module in
a system.
For extracting character regions, a method called

stroke width transform (SWT) [2] is gathering atten-
tion because of its simplicity and computational effi-
ciency. Figure 1 shows an example. This method is
used both for text localization and word recognition.
SWT, however, has the following two problems.

First, it cannot determine foreground and background.
Figure 1 (b) shows an example. It can correctly ex-
tract foreground text but falsely extracts background
text candidates. Second, when a character has sharp
corners or stroke joints, SWT fails to extract them.
Figure 2 shows an example. These problems affect the
performance significantly in the later stages.

To solve these problems, we propose algorithms for
integrating color-clustering information into the SWT
method. Unlike previous methods such as simply using
the mean color value of an extracted region, the pro-
posed algorithms integrate extracted regions by using
color clustering into those by using edge detection. We
explain how we integrate these two extracted results.

1.1 Related work

Character extraction is a module to extract charac-
ter regions in a form of either a group of connected
pixels or a bounding box. This module plays an im-
portant role in a system both for text localization and
word recognition. For text localization, characters are
extracted first. Then characters aligned on a line are
grouped, followed by word separation. In word recogni-
tion, a cropped rectangular word-region contains mul-
tiple characters. We need to extract characters first to
recognize characters followed by word recognition.
Many techniques have been proposed for charac-

ter extraction. These techniques can be categorized
into three types: binarization [10, 9], segmentation
and classification [12]. The segmentation category can
be further divided into two subcategories: edge-based
[15, 14, 7] and color-based [11, 14] methods. Bina-
rization and segmentation methods extract connected
components (CC) followed by CC analysis. Binariza-
tion and edge-based methods are fast to compute,
but their precisions are lower than that of color-based
method. Classification has higher precision but is slow
to compute because it requires sliding windows across
an image. Most text localization and recognition sys-
tems have combinations of these techniques.
SWT is an edge-based method of segmentation that

is simple, computationally efficient, and relatively ac-
curate. It has been applied to many text localizing
methods [2, 13, 5, 6, 14, 3], text recognition [8], and
even a popular open source software from libccv 1. The
original SWT method [2] was combined with post pro-
cessing such as character grouping and word separation
for text localization that requires parameter tuning. Yi
and Tian presented a similar method with SWT [14] .
Yao et al. [13] extended the SWT method to avoid the
tuning by combining classifiers.
On the other hand, color-based methods, which clus-

ter pixels in color, have also been proposed [11, 14]. Yi
and Tian [14] reported that the edge-based method
is faster than the color-based method, but the color-
based method is more accurate.
To incorporate colors with the SWT method, the

original work [2] simply computed the mean color value

1http://libccv.org/

MVA2015 IAPR International Conference on Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN5-11

73



(a) Original (b) Result with regular SWT (c) Result with our color integrated
SWT

Figure 1. Comparison between results of regular SWT and our color integrated SWT

Figure 2. SWT’s problem (left shows original im-
age; right shows extracted result with character
missing joints and corners)

of each character for grouping characters. Meng et al.
[6] used color partially by adding the representative
color to each edge segment of a character. Because
these methods add color after extracting a character,
they do not solve the above mentioned two problems.
Huang et al. [3] measured color variation while de-
tecting a character. Their method may deal with the
second problem of missing corners or joints, but the
statistical performance of this module was not mea-
sured. Furthermore it does not solve the first problem
of brightness ambiguity. None of the methods uses
color clustering information.
To solve the second problem of missing corners or

joints, Yi and Tian [14] suggested applying morpholog-
ical filters, but the effectiveness was not discussed ad-
equately. The first problem of ambiguity in brightness
patterns between foreground text and backgrounds has
never been discussed before.

2 Color integrated SWT

2.1 Stroke Width Transform (SWT) - Overview

SWT comes from the observation that text has sim-
ilar stroke widths [2]. It finds edge pairs on the basis
of edge directions after using the Canny edge detector.
Starting from an extracted edge pixel, it finds a pair-
ing edge pixel that has the opposite direction, within
a pre-determined allowable angle difference (π6 ) with a
similar edge strength, examining pixels along the di-
rection like ray-tracing. By recording the width not
only on the edge pixel but also on the pixels along the
ray, it transforms an image into a stroke width map
that has stroke width values in pixels. This enables us
to use conventional image processing techniques such
connected component analysis. This operation is con-
ducted twice for two different brightness patterns. The
next step is to group pixels for character candidates by
using conventional connected-components labeling.

2.2 Color clustering for character extraction

Since many text strings both in digital-born images
and natural-scene images have uniform color, cluster-
ing color pixel values effectively extracts text regions.
Our objective is to retrieve dominant colors while re-
ducing the number of colors. Our color clustering is
based on the algorithm proposed by Senda et al. [11].
We describe the method briefly in this section.
It consists of three steps:

1. Color histogram

2. Color cluster merging

3. Color segmentation.

The first step is to make a histogram in a reduced
color space that has 6 bits per RGB color channel.
Each histogram bin corresponds to a cluster.
The second step is to merge similar color clusters

into a representative cluster by measuring the distance
of clusters.

2.3 Integration of color into edge-based methods

While SWT tends to miss joints or corners, color
clustering can preserve them. Therefore, to enhance
SWT components, we propose an algorithm that uni-
fies one component extracted by SWT (SWT compo-
nent) and another by color-clustering (color compo-
nent). In preparation, we record the position and size
of the bounding box for each connected component as
well as its small image corresponding to the bounding
box. An SWT component stores a stroke width map in
the small image while a color component stores a color
index number as a pixel value. We consider a pair of
components that overlap in the images.
The following formula represents this image opera-

tion of a union between two extracted images:

S = E ∪ C s(x, y) =

⎧⎪⎨
⎪⎩
e(x, y) if e(x, y) > 0

wm else if c(x, y) > 0

0 otherwise

(1)

where S represents the union component, E represents
an SWT component, e represents its stroke width map,
C represents a color component, c represents its color
index image, s is a stroke width map of union, x, y
are image coordinates, and wm is the mean value of
the stroke widths of E. Since the image sizes of two
bounding boxes can be different, we consider a rectan-
gular image that includes both bounding boxes.
This operation, however, can be applied only to

the ideal case when both color and edge components
mostly overlap for a character. In real images, there
are many exceptions. For example, when a few char-
acter obtained by SWT are merged into one caused by
low image resolution, corresponding color components
are not always merged. We thus need to handle the
one-to-many matching problem.

2.4 One-to-many matching

To handle one-to-many matching, we obtain a union
again across different color components that overlap
the SWT component of interest. The integrated com-
ponent U is represented by the following equation

74



(a) Original (b) SWT segments of bright
text

(c) SWT segments of dark
text

(d) SWT segments combined

Figure 3. Brightness pattern problem

(a) SWT component (blue
region)

(b) Color component (white
region)

Figure 4. Edge component and color component

U =
n∐

i=1

Si (2)

where n represents the number of overlapping color
components and Si is a union between an edge compo-
nent E and a color component Ci, represented by the
formula

Si = E ∪ Ci. (3)

We repeat this operation for all of the connected
SWT components.

2.5 Background component elimination

Integrating color into SWT can solve not only the
missing joint-corner problem but also the opposite
brightness pattern problem. Figure 3 shows an exam-
ple. As we can see in (c), SWT detects regions falsely
between characters because we apply SWT twice for
two different character brightness patterns as described
by Epshtein et al. [2]. We explain how we solve this
problem by integrating color.
The characteristic of falsely detected SWT compo-

nents on the background is that they are mostly over-
lapped, while the areas of color components are larger
than those of intersecting pixels because color compo-
nents correspond to the background. If we expand the
region of interest, the area of a color component in-
creases. Figure 4 shows an example. By comparing
areas between the intersecting pixels and the corre-
sponding color component, we can identify if the SWT
component is on the background or foreground text.
The intersecting area in pixels can be obtained by the
following INTERSECTION image operation.

T = E ∩ C t(x, y) =

{
e(x, y) if e(x, y) > 0 and c(x, y) > 0

0 otherwise.

(4)

where T represents the intersection component, E rep-
resents an SWT component, e represents its stroke
width map of an SWT, C represents a color compo-
nent, c represents its color index map, t is a map of
intersection, and x, y are image coordinates.

We obtain the number of pixels (area) in the inter-
section component as At by counting non-zero pixels
in the intersection component T . When we count the
number of pixels of the color component as Ac, we can
define the ratio R between these two areas as:

R =
At

Ac
. (5)

If the ratio R is smaller than a pre-defined threshold
Rt, we determine that the SWT component is in the
background.
Again, this is an ideal case for one-to-one match-

ing. To handle multiple components, we sort overlap-
ping color components in descending order in terms of
the number of intersecting pixels. Comparing with the
largest color component, if R is smaller than Rt, we
eliminate the SWT component as the background.
This operation can be combined with the previous

operation of enhancing SWT components in 2.3 and
2.4. The procedure can be summarized as follows

1. Choose one SWT component e

2. Find all color components that overlap the SWT
component e

3. Sort them in terms of the number of intersecting
pixels At

4. Find the color component that has the most in-
tersecting pixels Ac

5. Compute the ratio R for the SWT component

6. If R is smaller than the pre-defined threshold Rt

then discard it as the background and finish for e

7. Otherwise, enhance it and compare another color
component to enhance e

8. Repeat until no overlapping color components are
left.

We repeat these steps for all of the SWT compo-
nents.

3 Experimental results

The ICDAR dataset [4] was used for evaluation. Fig-
ure 1 shows an example of the results with digital-born
images. The last letter ”y” is enhanced while com-
ponents between characters were correctly eliminated.
Figure 5 shows an example of the results with natu-
ral scene images. False character candidates between
characters were correctly eliminated in 5(c).
We measured the performance statistically on

digital-born and natural-scene test images, consisting
of 141 and 233 images respectively. We used character
segmentation data of the test set with ground-truth.
Our intention is to measure the ability of extracting
character candidates as a module in a text localization
or word recognition system. For this reason, the results
may not be as good as those of others that are com-
bined with other techniques such as classifiers in the
ICDAR competition. In addition, our focus is on com-
paring the difference between the original SWT and
color integrated SWT.
Table 1 shows the result. The f-score for digital-born

images significantly improved from 16.2% to 53.2%,
and that for the natural scene increased from 14.2 % to

75



(a) Original (b) SWT

(c) Proposed

Figure 5. Result comparison of a scene image

46.4 %. The performance was measured by the atom-
based framework (Recall, Precision and F-score) pro-
posed by Clavelli et al. [1], which considers character
structure rather than simply counting overlapping pix-
els.
In the experiment, the threshold of Rt was set to 0.8.

Color clustering was conducted only in a portion of the
image around the detected SWT components, which
was expanded 50% both for the height and width of
the bounding box of a component to form a rectangular
sub-image. The threshold of color distance in cluster-
ing was 200 in RGB. We used three rays in computing
SWT, by adding two rays at ± 30 degrees. We set the
maximum stroke width to 70 pixels.

Data Methods Recall Precision F-score

Digital born
SWT 11.8% 26.0% 16.2%
Proposed 45.0% 65.2% 53.2%
Morphology 8.5% 13.6% 10.4%

Natural scene
SWT 13.0% 15.2% 14.2%
Proposed 44.8% 48.2% 46.4%
Morphology 14.4% 11.5% 12.8%

Table 1. Comparison with ICDAR 2013 images

We also compared the difference against the im-
provement by using the morphological operation [14].
The performance decreased due to enhancement of
false candidates in the background.

3.1 Discussions

Integrating color clustering with an edge-based
method of SWT can improved the performance of char-
acter extraction. Although simple union and intersec-
tion pixel operations can be used, multiple segment
handling is necessary because an edge-based compo-
nent does not correspond exactly to a color-based com-
ponent. We described algorithms that handle this sit-
uation to enhance SWT results. This provides more
accurate results than before for computing image fea-
tures. In addition, these algorithms can eliminate (or
assign low confidence to) falsely detected SWT com-
ponents in the background.
The computational cost is lower than that of tradi-

tional color clustering methods because color clustering
is conducted only in surrounding areas of components
extracted by SWT rather than in the entire image. The

processing speed is in the middle between edge-based
and color-based methods.
In the future, we plan to embed this character ex-

traction to a text localizing or word recognition system.

4 Conclusions

We proposed algorithms for integrating color infor-
mation into edge-based character extraction. Doing
so can fill the holes or missing corners of a charac-
ter caused by the imperfection of SWT. In addition, it
can eliminate falsely extracted components in the back-
ground. Experiments on ICDAR 2013 image dataset
showed that the f-scores increased both on digital-born
(from 16.2% to 53.2%) and natural-scene images (from
14.2% to 46.4%).

References

[1] Clavelli, A., Karatzas, D. and Llad’os, J.: A frame-
work for the assessment of text extraction algorithms
on complex colour images, ICDAR, pp. 19–26 (2010).

[2] Epshtein, B., Ofek, E. and Wexler, Y.: Detecting Text
in Natural Scenes with Stroke Width Transform, IEEE
Conf. on CVPR, pp. 1–8 (2010).

[3] Huang, W., Lin, Z., Yang, J. and Wang, J.: Text lo-
calization in natural images using stroke feature trans-
form and text covariance descriptors, ICCV, IEEE, pp.
1241–1248 (2013).

[4] Karatzas, D. and et al.: ICDAR 2013 Robust Reading
Competition, ICDAR (2013).

[5] Karthikeyan, S., Jagadeesh, V. and Manjunath, B.:
Learing bottom-up text attention maps for text de-
tection using stroke width transform, ICIP (2013).

[6] Meng, Q., Song, Y., Zhang, Y. and Liu, Y.: TEXT
DETECTION IN NATURAL SCENE WITH EDGE
ANALYSIS, ICIP (2013).

[7] Neumann, L. and Matas, J.: Text localization in real-
world images using efficiently pruned exhaustive search,
ICDAR, pp. 687–691 (2011).

[8] Neumann, L. and Matas, J.: A method for text lo-
calization and recognition in real-world images, Com-
puter Vision–ACCV 2010, Springer, pp. 770–783 (2011).

[9] Niblack, W.: An introduction to digital image process-
ing, Strandberg Publishing Company (1985).

[10] Otsu, N.: A threshold selection method from gray-
level histograms, Automatica, Vol. 11, No. 285-296,
pp. 23–27 (1975).

[11] Senda, S., Minoh, M. and Ikeda, K.: A method of ex-
traction of character pattern from a color image based
on the uniformity of the character color of a string,
Technical report of IEICE (The Institute of Electron-
ics, Information and Communication Engineers), PRU94-
29, Vol. 09 (1994).

[12] Wang, T., Wu, D. J., Coates, A. and Ng, A. Y.: End-
to-end text recognition with convolutional neural net-
works, ICPR, IEEE, pp. 3304–3308 (2012).

[13] Yao, C., Bai, X., Liu, W., Ma, Y. and Tu, Z.: Detect-
ing Texts of Arbitrary Orientations in Natural Images,
CVPR, pp. 1083–1090 (2012).

[14] Yi, C. and Tian, Y.: Text String Detection from Natu-
ral Scenes by Structure-based Partition and Grouping,
ICIP, Vol. 20, No. 9, pp. 2594–2605 (2011).

[15] Zhong, Y., Karu, K. and Jain, A. K.: Locating text
in complex color images, Pattern Recognition, Vol. 28,
No. 10, pp. 1523–1535 (1995).

76


